

Exotica and SUSY in the Age of the 125 GeV Higgs

Results and Directions from CMS

Jeremiah Mans University of Minnesota

> LISHEP2013 March 22, 2013

Age of the 125 GeV Higgs

- Precision studies of the first new fundamental particle detected since 1994.
 - Study key issues raised by Higgs (e.g. Fine-tuning question)
 - Study issues with SM which were not resolved by observation of the Higgs

Motivations for Dark Matter

- Astrophysics and cosmology very strongly favor the existence of non-baryonic dark matter as the dominant source of structure formation and galaxy dynamics
 - From astrophysics, dark matter must be neutral and colorless.
 - From cosmology/galaxy formation, dark matter must be cold (easiest if it is heavy)
- No known particle meets these requirements

SUSY as an answer

 By adding a space-time symmetry such that all fermion fields have matched boson fields, Higgs is stabilized up to GUT scale

$$e, \mu, \tau \rightarrow \tilde{e}, \tilde{\mu}, \tilde{\tau}$$
 sleptons
 $u, ... b, t \rightarrow \tilde{u}, ... \tilde{b}, \tilde{t}$ squarks
 $H, h, Z, \gamma \rightarrow \chi^{0}_{1...4}$ neutralinos
 $H^{\pm}, W^{\pm} \rightarrow \chi^{\pm}_{1,} \chi^{\pm}_{2}$ charginos
 $g \rightarrow \tilde{g}$ gluino
 $G \rightarrow \tilde{G}$ gravitino

- With the additional requirement of R-parity conservation, several good dark matter candidates: neutralinos or gravitino
- Inclusion of colored particles (gluino), should have a high production rate at LHC

SUSY Constraints

- Previous-to-LHC constraints come from BBN, FCNC, relic density requirements, LEP and the Tevatron
- LHC measurements
 - M_H>124.5 GeV, BR(B_s → μμ) < 1.5 x SM require heavy superpartner masses (>300 GeV, often >1 TeV)
- Active work ongoing studying models with fewer constraints
 - NUHM1, NUHM2
 - Mass-scale unification at scale below GUT

CMS Detector

Crucial aspect for dark matter is hermetic coverage out to $|\eta|=5$

Collider signature for dark matter production ismissing transverse momentum, confusingly often called "MET"

CMS Integrated Luminosity, pp

Mono-Jets

The mono-jet signature is striking due to the apparent violation of momentum conservation

- Mono-jet signatures have a long history at hadron colliders
- Mono-jets can appear in many models (including both supersymmetry and extradimensions models) and are directly tied to a dark matter candidate

Requirements and Backgrounds

Requirements

- p_T (jet 1) > 110 GeV, at most one additional jet with p_T > 30 GeV, must have $\Delta \phi$ <2.5
- No isolated e/mu with $p_T > 10$ GeV, no tau with $p_T > 20$ GeV
- Minimum MET = 250 GeV (binned in MET)

Backgrounds

• Leading backgrounds $(Z \rightarrow vv)$ and $W \rightarrow lv$) taken from data

Event Displays

Limits and Interpretations

Multijets

Requirements:

- At least 2 jets with pT > 110 GeV
- Reject events with leptons (pT>10 GeV)
- Study in bins of H_T and bjet count

Backgrounds

- QCD mulijet suppressed using α_τ variable
- Remaining backgrounds estimated in similar manner to monojet

Interpretations

Lepton + b-jets + MET

		$S_{\mathrm{T}}^{\mathrm lep}$ [GeV]	control reg. data	prediction	observation
$N_{\rm b}$ =2	Muons	[250,350]	141	6.00 ± 2.40 (2.23)	9
		[350,450]	24	$1.37 \pm 1.19 (1.12)$	2
		>450	9	$0.0 \pm 0.66 (0.66)$	0
	Electr.	[250,350]	112	$3.83 \pm 1.84 (1.75)$	9
		[350,450]	28	$2.74 \pm 2.02 (1.86)$	2
		>450	9	$0.0 \pm 0.42 (0.42)$	0
$N_{\rm b} \ge 3$	Muons	[250,350]	28	$1.92 \pm 0.95 (0.84)$	0
		[350,450]	13	$0.57 \pm 0.58 (0.52)$	0
		>450	2	$0.0 \pm 0.22 (0.22)$	0
	Electr.	[250,350]	45	$1.89 \pm 1.03 (0.94)$	4
		[350,450]	7	$0.85 \pm 0.80 (0.70)$	0
		>450	0	$0.0 \pm 0.08 (0.08)$	0

Long-lived particles

• Many of the SUSY requirements for dark matter could be achieved with two particles: one which might be charged and could be produced at a collider, but decays with a long lifetime (>1 ns) into the "astrophysical" dark matter particle.

Stopped Particles Search

Requirements:

- No signal in beam pickups for +/- 50 ns
- "Jet" with energy70 GeV
- Rejection of cosmic muons, beam halo, calorimeter noise

Results:

- No evidence for stopped hadronic particles observed
- Limits on stopped "R-hadrons" and stops published

Faster/Shorter-lived Particles

Requirements:

 High dE/dX in tracker, optionally long TOF in muon system

Requirements:

 Out-of-time, "oblong" photon, significant missing ET

"Generic" searches for typical particle decays: difermion signatures

Hadronic Pair-Production

Requirements:

- Reconstruct jets with anti-kT "cone" of 0.5, then combine jets within $\Delta R < 1.1$
- $|\Delta \eta_{jj}| < 1.5$, Mjj > 890 GeV

Lepton Pair Production

CMS-PAS-EXO-12-61 CMS-PAS-EXO-12-27 CMS-PAS-EXO-12-31

Lepton+MET (W')

Mu Requirements:

• Isolated muon with $p_T>45$ GeV, no other muon with $p_T>25$ GeV

Electron Requirements:

- Isolated electron with $p_T>100$ GeV (no veto on other leptons) Other Requirements:
- $\Delta \phi_{lv} > 0.8\pi$, $0.4 < p_T/MET < 1.5$

Many more...

Summary of SUSY Exclusions

Future Reach (one view)

