Production in the forward region

Murilo Rangel on behalf of the LHCb Collaboration

LISHEP 2013

17-24 March 2013 Brazil - Rio de Janeiro

Outline

→ LHCb Experiment

- → Results
 - QCD
 - energy flow
 - bb asymmetry and cross section
 - EW
 - Z production
 - Central Exclusive Production
 - Searches
 - SM/MSSM Higgs decaying to taus
 - Long-lived particles

→ **Summary**

LHC

LHCb Experiment

The detector is a single arm spectrometer fully instrumented in the forward region (2.0 < η < 5.0) \rightarrow Unique coverage at LHC

Excellent Vertex Resolution and Tracking

 \rightarrow Vertex Locator (also for η < -1.5)

→ Tracking Stations

Neutral Energy Measurements

→ EM and Hadronic Calorimeter

Particle Identification

- → Rich detectors
- → Muon Stations

Trigger

→ Ability to go low in muon p_¬

LHCb Data

LHCb Integrated Luminosity pp collisions 2010-2012

>90% data taking efficiency

>99% DQ efficiency

2010 → 37/pb at \sqrt{s} = 7 TeV

2011 \rightarrow 1.0/fb at at \sqrt{s} = 7 TeV

2012 \rightarrow 2/fb at at \sqrt{s} = 8 TeV

Thanks to LHC team!

Energy Flow Measurement

arXiv:1212.4755

Motivation

Sensitive to parton radiation and multiple-parton interaction Tests of event generators – collider and cosmic ray models

Integrated Luminosity 0.1/nb – low pile-up data (2010)

Trigger

At least one track reconstructed

Selections

Inclusive minimum bias

Hard-scattering (p_{τ} >3 GeV)

Diffractive enriched (no tracks η <0)

Non-diffractive enriched (1 or more tracks η <0)

Analysis

Measurement with tracks 2 GeV<p<1 TeV Corrected to particle level

$$rac{1}{N_{
m int}}rac{dE_{
m total}}{d\eta} = rac{1}{\Delta\eta}\left(rac{1}{N_{
m int}}\sum_{i=1}^{N_{
m part},\eta}E_{i,\eta}
ight)$$

Main uncertainties

model uncertainty, selection cuts

M. Rangel

PYTHIA PREDICTIONS

COSMIC RAY PREDICTIONS

$$rac{1}{N_{
m int}}rac{dE_{
m total}}{d\eta} = rac{1}{\Delta\eta}\left(rac{1}{N_{
m int}}\sum_{i=1}^{N_{
m part},\eta}E_{i,\eta}
ight)$$

M. Rangel

Integrated Luminosity: 18/pb (2010)

Trigger

B-hadron candidate using high p_T hadrons/electrons or muons from secondary vertex – efficiency = $(10.2 \pm 0.2)\%$

Selection Two B-hadron candidates from b-seed algorithm

- secondary vertex reconstructed from two or three tracks
- efficiency ~ 80%
- energy calibration derived from simulation
- $-\eta = [2.5 4.0]$ and $p_{\tau} > 5$ GeV

Analysis

Decomposition of cc and bb using fit template of a BDT using 4 variables: seed p, seed mass, sum of IP significances and scalar sum of track $p_{\scriptscriptstyle T}$ wrt seed direction

Main uncertainties Luminosity, simulation dependence (~10%)

bb cross section

$$\sigma^{b\bar{b}} = 7.7 \pm 0.12 \text{ (stat)} \pm 0.84 \text{ (syst)} \ \mu\text{b}$$

 $\sigma^{c\bar{c}} = 104.6 \pm 2.7 \text{ (stat)} \pm 11.4 \text{ (syst)} \ \mu\text{b}.$

NLO PowHeg \rightarrow σ = 5.3 ± 2.1 μ b *

FONLL \rightarrow σ = [170,300] μ b *

CDF/D0 measures larger $t\bar{t}$ A_{FB} than SM prediction Atlas/CMS measurements are in agreement with SM $b\bar{b}$ A_{FC} can constrain models (SM A_{FC}<1%)

$$A_{FC}^{b\bar{b}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \quad \Delta y = y_{\bar{b}} - y_b$$

Integrated Luminosity 1.0/fb (2011)

Trigger B-hadron candidates – BDT discrimination at HLT

Selection

2 jets (η = [2. - 4.2] and p_T > 15 GeV) back-to-back Flavor tagging with muon (purity ~ 70%) Jet to quark correction derived in simulation

Main uncertainties

flavor tagging, detector asymmetry

So far, measurement agrees with SM NB, di-jet mass not unfolded (resolution ~20%) Next, unfolding mass and study 2012 data

Testing ground for QCD

Integrated Luminosity 36/pb (2010)

Selection

Two muons and nothing else in the forward region (η = [2.0 , 4.5]) No backward tracks (η = [-3.5 , -1.5])

Analysis

Signal shape from SuperChic Background shape from data Template fit to Dimuon p₊

Main uncertainties

Trigger efficiency Luminosity Signal/background shapes

M. Rangel

Events / 20 MeV/c ²	20 18 16 14 12 10 8 6 4 1 2 0 3.4	3.6	LHCb 3.8 Dimuon mass [GeV/c	

Predictions [pb]	$\sigma_{pp o J/\psi(o\mu^+\mu^-)}$	$\sigma_{pp o \psi(2S)(o \mu^+\mu^-)}$
Gonçalves and Machado	275	
Starlight	292	6.1
Motyka and Watt	334	
SUPERCHIC	396	
Schäfer and Szczurek	710	17
LHCb measured value	$307 \pm 21 \pm 36$	$7.8 \pm 1.3 \pm 1.0$

$$\sigma_{\gamma p \to V p}(W_{\pm}) = \frac{1/r(y) \frac{d\sigma}{dy} - k_{\mp} \frac{dn}{dk_{\mp}} \sigma_{\gamma p \to V p}(W_{\mp})}{k_{\pm} \frac{dn}{dk_{\pm}}}.$$

Inclusive Z production

Integrated Luminosity 1.0/fb (2011)

Trigger

Single electron/muon trigger

Selection

$$Z \rightarrow e^+e^-$$

Two electrons - p_T > 20 GeV and 2.0 < η < 4.5 40 GeV < M_{ee} < 120 GeV

$$Z \to \tau^+ \tau^-$$

Channels - $\mu\mu$, μe , he, $h\mu$

One lepton with $p_{_T}$ > 20 GeV, second particle with $p_{_T}$ > 5 GeV Isolated particles, back-to-back, displaced from primary vertex $p_{_T}$ asymmetry > 0.3 for $\mu\mu$ channel

QCD / EW backgrounds estimated from data

limits to neutral Higgs – SM and MSSM

Integrated Luminosity 1.0/fb (2011)

Selection

same as $Z \rightarrow \tau^+ \tau^-$ measurement

Backgrounds

QCD, W/Z, top/diboson

Signals

SM – dFG MSSM – HIGLU, GGH@NNLO, BBH@NNLO

SUSY with R-parity violation – Lightest Superpartner is unstable Hidden Valley

Integrated Luminosity 35.8/pb (2010)

Loose Selection

- radial distance from beam line > 0.4 mm

Backgrounds

Interaction with matter and QCD

Final Selection

Require 2 LLPs back-to-back

- # of tracks > 6
- mass > 6 GeV

m_{LLP}	30	35	40	48	55
m_{h^0}					
100	101	58	44	58	
105	100	75	44	39	
110	132	75	56	34	
114	128	91	47	32	46
120	148	93	58	34	31
125	179	90	61	41	29

m_{LLP}	30	35	40	48	55
$ au_{LLP}$					
3	210	156	136	168	410
5	145	101	68	58	137
10	129	91	47	32	46
15	155	90	49	31	33
20	131	93	63	32	31
25	142	100	61	34	25

Table 5: 95 % CL upper limits on the cross-section for the production of a Higgs boson in the BV model, as a function of the LLP and Higgs masses for a LLP lifetime of 10 ps (left), and as a function of the LLP mass and lifetime for a Higgs mass of 114 GeV/c^2 (right). Cross-sections, masses and lifetimes are given in pb, GeV/c^2 and ps, respectively.

Summary

- → Measurements are in agreement with theoretical predictions and few of them already have precision comparable with theoretical uncertainties
- → New limits of direct searches in the forward region
- → Many other results not covered in this talk are available here LHCb Results

→ Update with 2012 data and new studies undergoing!

VELO acceptance

LISHEP 2013 M. Rangel

- [6] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.
- [7] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820.
- [8] D. d'Enterria et al., Constraints from the first LHC data on hadronic event generators for ultra-high energy cosmic-ray physics, Astropart. Phys. 35 (2011) 98, arXiv:1101.5596.
- [9] S. Ostapchenko, High energy cosmic ray interactions: an overview, J. Phys.: Conf. Ser. 60 (2007) 167, arXiv:astro-ph/0610788.
- [10] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
- [11] I. Belyaev et al., Handling of the generation of primary events in GAUSS, the LHCb simulation framework, Nuclear Science Symposium Conference Record (NSS/MIC) IEEE (2010) 1155.
- [12] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.
- [13] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.

	Predictions [pb]	$\sigma_{pp o J/\psi(o\mu^+\mu^-)}$	$\sigma_{pp o \psi(2S)(o \mu^+\mu^-)}$
[12]	Gonçalves and Machado	275	
[11]	Starlight	292	6.1
[7]	Motyka and Watt	334	
[10]	SUPERCHIC	396	
[13]	Schäfer and Szczurek	710	17
	LHCb measured value	$307 \pm 21 \pm 36$	$7.8 \pm 1.3 \pm 1.0$

- [10] L. A. Harland-Lang, V. A. Khoze, M. G. Ryskin, and W. J. Stirling, Central exclusive χ_c meson production at the Tevatron revisited, Eur. Phys. J. C65 (2010) 433, arXiv:0909.4748.
- [11] S. R. Klein and J. Nystrand, Photoproduction of quarkonium in proton-proton and nucleus-nucleus collisions, Phys. Rev. Lett. 92 (2004) 142003.
- [12] V. P. Gonçalves and M. V. T. Machado, Vector meson production in coherent hadronic interactions: an update on predictions for RHIC and LHC, Phys. Rev. C84 (2011) 011902, arXiv:1106.3036.
- [13] W. Schäfer and A. Szczurek, Exclusive photoproduction of J/ψ in proton-proton and proton-antiproton scattering, Phys. Rev. D76 (2007) 094014, arXiv:0705.2887.
- [7] L. Motyka and G. Watt, Exclusive photoproduction at the Fermilab Tevatron and CERN LHC within the dipole picture, Phys. Rev. D78 (2008) 014023, arXiv:0805.2113.

Inclusive Z production

- [18] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].
- [19] A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
- [20] R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].
- [21] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].
- [22] P. Nadolsky et al., Progress in CTEQ-TEA PDF analysis, arXiv:1206.3321 [INSPIRE].

- [21] LHC Higgs Cross Section Working Group, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593.
- [22] S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 2. Differential Distributions, arXiv:1201.3084.
- [23] D. de Florian and M. Grazzini, Higgs production through gluon fusion: Updated cross sections at the Tevatron and the LHC, Phys. Lett. B674 (2009) 291, arXiv:0901.2427.
- [24] S. Heinemeyer, W. Hollik, and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76, arXiv:hep-ph/9812320.
- [25] M. Carena, S. Heinemeyer, C. Wagner, and G. Weiglein, Suggestions for benchmark scenarios for MSSM higgs boson searches at hadron colliders, European Physical Journal C26 (2003) 601, arXiv:hep-ph/0202167.

- [3] L. M. Carpenter, D. E. Kaplan, and E.-J. Rhee, Six-quark decays of the Higgs boson in supersymmetry with R-parity violation, Phys. Rev. Lett. 99 (2007) 211801, arXiv:hep-ph/0607204.
- [4] J. M. Butterworth, J. R. Ellis, A. R. Raklev, and G. P. Salam, Discovering baryonnumber violating neutralino decays at the LHC, Phys. Rev. Lett. 103 (2009) 241803, arXiv:0906.0728.
- [5] R. Barbier et al., R-parity-violating supersymmetry, Physics Reports 420 (2005) 1, arXiv:hep-ph/0406039; H. K. Dreiner, M. Kramer, and B. O'Leary, Bounds on R-parity violation from leptonic and semi-leptonic meson decays, Phys. Rev. D75 (2007) 114016, arXiv:hep-ph/0612278.
- [6] LHC Higgs Cross Section Working Group, Higgs cross sections at 7, 8 and 14 TeV, (April 2012), https://twiki.cern.ch/twiki/bin/view/LHCPhysics/.
- [7] M. J. Strassler and K. M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B651 (2007) 374, arXiv:hep-ph/0604261; M. J. Strassler and K. M. Zurek, Discovering the Higgs through highly-displaced vertices, Phys. Lett. B661 (2008) 263, arXiv:hep-ph/0605193.

