

ATLAS Upgrade

- from a TileCal perspective

Christian Bohm Stockholm University

On behalf of the ATLAS collaboration

Overview Introduction Phase 1 Phase 2 Summary

The presentation is to a large extent based on slides from colleagues

Current Status

LHC designed for 10^{34} cm⁻²s⁻¹ @ 7+7 TeV Limited to 3.5+3.5 TeV due to magnet problems – otherwise runs well Should reach 10^{34} cm⁻²s⁻¹ and 7+7 TeV (6.5+6.5 TeV) after two years of magnet consolidation

ATLAS also runs well – some consolidation needed

Why upgrade?

Adapt to improved LHC luminosity – factor 10 possible Adapt to changing physics requirements Remember that much must be replaced anyway due to old age and radiation damage

Current (not yet approved)upgrade schedule

New rough draft 10 year plan

Machine parameter development

Phase 0 – Phase 1:	upto 10^{34} cm ⁻² s ⁻¹ , initially 6.5+6.5TeV, 25 ns

Phase 1 – Phase 2: upto 2-3[.]10³⁴cm⁻²s⁻¹, 7+7TeV, 25 or 50 ns

What are the main issues?

Higher luminosity → more events accepted with current criteria but level 1 rate stays ~ 100kHz – L2 capacity increased but also event sizes Higher threshold not the answer → better L1 trigger decisions needed Better information - Better algorithms – Better architecture Move down algorithms in trigger hierarchy: EF→L2→L1(→L0) Higher luminosity → increased occupancy - ~200 minimum bias events/BC → pile up

ID need replacement due to radiation damage and aging

Calorimeter on detector electronics designed for 10 year of 10³⁴cm⁻²s⁻¹

FCAL replacement – radiation damage

Fake muon trigger reduction – cavern background – multiple scattering

Phase 0 upgrade

LS 1 (before end 2014)	
Detector consolidation	Ph0
L1 improvements (new L1Calo MCMs and CTP core)	Ph0
IBL?	Ph1
CMX and Phase 0 Topological processor	Ph1
LAr and TileCal readout demonstrators	Ph2
LS 2 (before end 2018)	
Muon new small wheel + new SL + MuCTPi	Ph1
Muon data into L1Topo (or isolation signals into L1Muon?)	Ph1
FTK	Ph1
Pilot project, new LAr electronics (perhaps more)	Ph2
Vertical slice tests for Ph-I and Ph-II	Ph2
LS 3 (after 2021)	
LAr and Tilecal new electronics, new Calo Trigger	Ph2
Endcap calorimeters	Ph 2
New ID, L1 Track Trigger?	Ph2
Two-stage trigger (L0/L1)?	Ph2
Possible MDT trigger	Ph2
Replacement Central Trigger integrated with topo trigger	\rightarrow Ph2

Phase where the major upgrade occurs

Phase 1 upgrade

LS 1 (before end 2014)		
Detector consolidation	Ph0	
L1 improvements(new L1Calo MCMs and CTP core)		Ph0
IBL?	Ph1	
CMX and Phase 0 Topological processor	Ph1	
LAr and TileCal readout demonstrators	Ph2	
LS 2 (before end 2018)		
Muon new small wheel + new SL + MuCTPi	Ph1	
Muon data into L1Topo (or isolation signals into L1Muon?)	Ph1	
FTK	Ph1	
Pilot project, new LAr electronics (perhaps more)	Ph2	
Vertical slice tests for Ph-I and Ph-II	Ph2	
LS 3 (after 2021)		
LAr and Tilecal new electronics, new Calo Trigger	Ph2	
Endcap calorimeters	Ph 2	
New ID, L1 Track Trigger?	Ph2	
Two-stage trigger (L0/L1)?	Ph2	
Possible MDT trigger	Ph2	
Replacement Central Trigger integrated with topo trigger	Ph2	

Inner Detector Upgrade

The innermost (B) layer most exposed – need replacement in Phase 1

Old B-layer cannot be removed → New, fourth, B-layer inside at r=33mm (Insertable B-layer (IBL)) → New smaller AI beam pipe

IBL→ improved performance → Why not in Phase 0 – difficult schedule – may be possible – FE14 (130nm) critical component – planar or 3d - services difficult

CO₂ evaporative cooling using Ti pipes, Carbon fibers to make mechanical structure strong and thin
 160 Mb/s optical links

TDAQ Phase 1 Upgrade

Add new functionalities → Longer latencies – must fit in available latency budget (Norman Gee)

LISHEP - July 9, 2011

TDAQ Phase 1 Upgrade

Potential latency consumers: New MCM + new CTP core Topological L1 trigger New Small Muon Wheel (Digital Full readout of calorimeter data)

The present calorimeter trigger reports number of different events to CTP and their positions (ROIs) to Level 2

Find and report # em, tau (energies) and jet (size and energy) objects passing limited # of thresholds Report global Missing ET (MET) and Sum ET Report positions (ROIs) to L2 However, positions are not used at L1

CMM = Common Merger Module

By combining the number of different events and ROIs in a topological processor

Directional correlations are made available to the CTP and ambiguous events may be resolved Reprogram cluster and jet processor boards so that they send ROIs over the backplane (at 4x speed) to the modified CMXs

CMX eXtended Comman Merger module

After the upgrade a range of topological triggers are available:

Overlap removal em, jets	
$\Delta \phi$	
$\Delta\eta$	
R	Angular distance
Back to back	
Not back to back	
Μ	Reconstructed mass

The CMX contains processing elements (FPGAs) and extra high speed links, which allows some topological processing in case of topo module production problems

The CMX will be installed in first long shutdown (LS1) along with a Topo demonstrator An expanded Topo function will be installed in LS2

Muon detector problems

Some muon trigger levels will saturate the trigger with fakes Fakes may be caused by false coincidences with cavern background (neutrons) or tails from previous BC New beam pipe will reduce cavern background (~30% reduction of fakes) Improved shielding will also help

Multiple scattering problem

Muon isolation

A new small wheel, which will improve momentum and directional resolution (1 mrad) will sharpen thresholds and removes fakes in the endcap region

Technology choice still open. The following options are considered: Thin MDT New TGC MicroMegas

Aim - global track reconstruction by the start of level-2 trigger (CDF)

The FTK's dual path RODs decouples from standard operation Use 8 planes initially Cluster finding send hits - Find pattern among AMs 10⁹ stored patterns – Fit track – remove duplications - use all planes Barrel 2014, rest later – extensive simulations Fast 25µs @ 3.10³⁴ – finds tracks with almost off line precision

Phase 2 upgrade

LS 1 (before end 2014)		
Detector consolidation	Ph0	
L1 improvements(new L1Calo MCMs and CTP core)		Ph0
IBL?	Ph1	
CMX and Phase 0 Topological processor	Ph1	
LAr and TileCal readout demonstrators	Ph2	
LS 2 (before end 2018)		
Muon new small wheel + new SL + MuCTPi	Ph1	
Muon data into L1Topo (or isolation signals into L1Muon?)	Ph1	
FTK	Ph1	
Pilot project, new LAr electronics (perhaps more)	Ph2	
Vertical slice tests for Ph-I and Ph-II	Ph2	
LS 3 (after 2021)		
LAr and Tilecal new electronics, new Calo Trigger	Ph2	
Endcap calorimeters	Ph 2	
New ID, L1 Track Trigger?	Ph2	
Two-stage trigger (L0/L1)?	Ph2	
Possible MDT trigger	Ph2	
Replacement Central Trigger integrated with topo trigger	Ph2	

LAr Phase 2 Upgrade

Full digital readout of all data to USA-15

Data bandwidth of entire LAr w. 1524 FEBs > 150Tbps (no redundancy)

- High speed parallel fiber optical transceiver (e.g. 12 fibers @ 10Gbps)
- The are upgrade R&D projects for developing high speed links, ADC solutions and RODs

Trigger access to full LAr resolution

Based on slide from Hucheng Chen

ROD (108 modules: 1 module/half FEC)

12 x 1 fibers

TileCal Phase 2 Upgrade

Drawer Readout

- 4-fold redundancy all fibers duplicated and 2 channels (on different fibers) per cell
- Clock, Trigger and Control are obtained via the GBT protocol
- Early prototypes are being developed
- FPGA radiation tolerance must be verified

The Calorimeter Readout Demonstrator Project

The Demonstrator project aims at a coordinated yet independent installation of digital trigger data links in a limited area (.4x.4) of both LAr and TileCal during LS1.

The new data path should operate in parallel with present analog trigger data path thus be compatible with the present trigger and readout

TBB and

Receiver,

Current LAr Architecture

Slide from F.Lanni

Idea for LAr Demonstrator System

- Phase 0: ~3k channels max, 0.4x0.4 are on one side of the barrel calorimeter
- Phase-1: extend to the full calorimeter trigger readout (~20k channels max), L1 trigger potentially using digitized layers

Slide from F.Lanni

The plan is to develop a hybrid demonstrator drawer compatible with the present system aiming at evaluation in TileCal test facilities before the end of 2013 and then insertion of one hybrid drawer in ATLAS in the end of LS1

Providing analog readout via present summation boards

Firmware in the sROD module interfaces the TTC inputs and the ROD outputs

FCAL Upgrade

Loss of efficiency in FCAL at High Luminosities Excessive HV drop and space charge effects Solutions:

- 1: New improved sFCAL new electronics and improved cooling → open cryostat and long shutdown
- 2. Warm mini FCAL in front of FCAL
 - A: Using Diamond detector Could be installed in Ph 1
 - B: Similar to FCAL but using high pressure Xe

Diamond mini-FCAL

From G.Oakham AUW Oxford March 2011

Track Trigger

One way to reduce the fake muons is to correlate them with a track in the ID at L1. A track trigger would also improve electron selection at L1 Whether a track trigger is necessary is being evaluated with simulations.

A L1 track trigger can be made in two ways:
 Self seeded – reports high p_T tracks

 need fast communication to form coincidences between layers – difficult – requires complete redesign of tracker – might operate w latency of ~3µs
 ROI seeded – less redesign of tracker but, needs a L0 trigger to provide ROIs and long ~10µs L1 latency
 A hi res Track Trigger might even provide impact parameters → L1 b-trigger

The track trigger would be incuded in the new ID that will be installed in Phase 2

Inner Detector Upgrade

The TRT will be removed in Phase 2

Different new ID layouts studied – larger size – larger pixel, larger strip - Utopia project

The new inner detector parts are designed with smaller feature sizes – 65nm planar or new 3d-technologies

Smaller feature sizes \rightarrow

more tolerant to permanent errors, but more sensitive to transient errors High speed optical links based on redundant data protocols (GBT*) and Versatile link*

Improved services – less material, less power dissipation, better cooling, better power supplies (serial power or DC-DC)

Smaller detector features – better resolution – reduced occupancy

Upgrade ID together in Ph 2 or Pixel already in Ph 1. Can Pixel last for 12 years – unlikely – more LS - more upgrades

Pixel: experience from IBL, develop RO-chip FE-I4 (pixel) SCT: RO-chip ABCDN-13 IN 130 nm

* CERN R&D development projects

Two stage trigger (L0/L1)

A ROI driven trigger needs a L0 trigger to provide ROIs

Phase-II – approx. timing sequence

Level-0 and Level-1 Latencies

LISHEP - July 9, 2011

Possible Phase 2 Muon Upgrades

Use MDTs to improve the trigger p_T resolution.

MDTs are slow and precise (100 times that of RPC), The long Phase 2 latency allow a precision 10 times RPC. using RPC seeded data

D della Volpe, L1 Upgrade meeting Stockholm 2011

There are many suggestions about how to improve the detector performance and sometimes many alternatives for each action.

These are being evaluated and compared using simulations and test (beam) results.

The final choices will all have to be installed during limited shut down periods available causing considerable logistic difficulties

The phase 1 upgrade program is taking shape and a phase 1 upgrade Lol is under development to be submitted at the end of the year.

Phase 2 is converging