

Search for new physics at the Tevatron

Pedro Mercadante SPRACE/UFABC

On behalf of DZero and CDF collaborations

Past and Present Accelerators

TeV Energy Scale

- Why is the TeV scale special?
 - It is the scale of EW symmetry breaking
 - We don't know how masses are generated
 - In the Standard Model the Higgs mechanism is evoked
- New Physics Beyond Standard Model?
 - Supersymmetry
 - Extra Dimensions
 - Other models

Tevatron Run II

CDF DØ Tevatron 1.96 TeV Antiproton Injector Recycler

- Detectors
 - Good coverage
 - Good particle identification
 - e
 - muon
 - Jets
 - Missing E_T
 - ...

Detectors

Integrated Luminosity

Collider Run II Integrated Luminosity

Lishep 2011

Supersymmetry

The MSSM

Minimal supersymmetric model

- Two Higgs doublet SM + Superpartners
- μ parameter
- tan β

Soft Terms

- Scalar Masses (m₀)
- Gauginos Masses (m_{1/2})
- Trilinear (A) Parameter
- Bilinear (B) Parameter

• Superpotential

 $W = \mu H_{d} H_{u} + f_{l} L H_{d} E + f_{d} Q H_{d} D + f_{u} Q H_{u} U$ $+ \lambda L L E + \lambda L Q D + \lambda L Q D + \varepsilon L H_{u}$

Supersymmetry Which SUSY?

- mSUGRA (Constrained MSSM)
 - $m_{0},\,m_{1/2},\,tan$ $\beta,$ A, sign μ
 - gluino + squark
 - gluino + sbottom
 - trilepton
- AMSB and GMSB
- R parity Violation Models

Bottom Final State

- Search: Sbottom production
- B-Jets + missing E_{T}
 - Missing $E_T > 40$ GeV
 - 2 Jets; p_T > 20 GeV
 - Lepton veto

Leptoquark Interpretation

SUSY interpretation

۲

•

R-Parity Violation

a)

DØ, 5.3 fb¹

signal (M_=100 GeV) Z/y*

data

Search: Sneutrino (λ'_{311} , λ_{312}) 10² signal (M^V=400 GeV) W+iets Events/20 GeV diboson Muon + Electron ٦tī 10 Muon $p_T > 20$ GeV Electron $E_{\tau} > 30 \text{ GeV}$ – jet veto $p_T > 25 \text{ GeV}$ 10⁻¹ 10⁻² 300 200 400 0 100 500 M_{eu} [GeV] 0.014 DØ, 5.3 fb¹ DØ, 5.3 fb¹ **Observed Limit** 30 --- λ₃₁₂=0.07 0.012 95% CL $\sigma \times BR(e\mu)$ [fb] Expected Limit $\lambda_{312}^{312}=0.02$ $\lambda_{312}=0.01$ 25 Expected Limit ±1 s.d. 0.01 **95% C.L.** λ³¹¹ Expected Limit ±2 s.d. λ₃₁₂=0.005 20 0.008 N.L.O. $p\overline{p} \rightarrow \tilde{v}_{\tau} \rightarrow e\mu$ 0.006 ----- λ'₃₁₁=0.003, λ₃₁₂=0.005 15 — — λ'₃₁₁=0.003, λ₃₁₂=0.07 0.004 10 0.002 5 900 150 200 250 300 350 900 400 450 500 150 200 250 300 350 450 400 $M_{\widetilde{v}_{*}}$ [GeV] $M_{\tilde{v}}$ [GeV] PRL, 105, 191802 (2010) D0

500

Like Sign di leptons

Le G

G

r^{rr}r

χ0

χ0

- GMSB: NLSP Neutralino (LSP: light Gravitino)
- Search: Di photon channel
 - Photon $p_T > 20 \text{ GeV}$
 - Missing E_T

GMSB

Extra Dimensions

- Large Extra Dimensions (ADD models)
 - Only gravity propagates in the extra dimensions
 - Direct signal: missing ET from the sum of KK states propagating in the bulk
 - Indirect signal: sum of KK towers modify the production of SM particles
- Universal Extra Dimensions
 - All particles can propagate in the extra dimensions. All particle have new excited states
 - Signals are similar to those of SUSY
- Randall Sundrum models
 - Excited states of gravitons are heavy.
 Might be produced and decay in pairs of SM particles

- UED (Pair production of KK quarks)
 - Lightest KK particle: Photon
 - If additional Large ED -> KK Photon decay Photon+ Graviton
- Search: Di photon channel
 - Photon $p_T > 20 \text{ GeV}$
 - Missing E_T

 $R^{-1} < 477 \text{ GeV}$

UED interpretation

UED

Randall Sundrum Gravitons

- Production of Graviton Excitation -> Resonant Signal
- Looking for a bump
- Combined results $ee + \gamma \gamma$

15

Randall Sundrum Gravitons (II)

Combined results : Dimuon channel

k/M=0.1

CDF Note 10479

Randall Sundrum Gravitons (III) WW/WZ decays

- Decay to Boson pair
 - Lepton + jet
 - Lepton pair + jet
 - 3 Lepton •

$ZZ + missing E_T$

• Heavy N₂ pair production

 $p\bar{p} \rightarrow Z/\gamma^* \rightarrow N_2N_2 \rightarrow N_1ZN_1Z$

- Z Boson pair + MET
 - 2 lepton $p_T > 20 \text{ GeV}$
 - 2 Jets $p_T > 15 \text{ GeV}$
 - Missing $E_T > 40 \text{ GeV}$

CDF Note 10539

CDF Run II Preliminary $\int Ldt = 4fb^{-1}$ 95% CL

M_{N1}	M_{N2}	Cross-Section [fb]		Yield [events]	
$[\text{GeV}/c^2]$	$[\text{GeV}/c^2]$	*Exp. Limit	Obs. Limit	*Exp. Limit	Obs. Limit
75	175	[243.2,901.3]	701.6	[10, 38]	29
75	200	[107.1 , 649.2]	368.9	[5, 28]	16
125	225	[332.3 , 1182.6]	1087.9	[12, 42]	39
75	225	[53.7,329.2]	273.2	[2, 13]	11
75	275	[49.2 , 211.5]	132.2	[2, 9]	6
125	300	[44.2 , 209.6]	137.5	[2, 9]	6
175	300	[67.0, 369.7]	315.4	[3, 15]	13
125	350	[41.0 , 161.6]	47.7	[2, 7]	2
225	350	[76.6, 420.0]	297.0	[3, 19]	13
75	350	[42.2, 153.7]	54.9	[2, 7]	2

* Expected Values shown are the 2 sigma boundaries

Fourth Generation t'

- Heavy $t \rightarrow Wb$
 - -1 lepton $p_T > 20$ GeV
 - 4 Jets $p_T > 20 \text{ GeV}$
 - b tag
 - Missing $E_T > 20 \text{ GeV}$

Preliminary $t' \rightarrow Wb, \ge 4$ jets

theoretical prediction

350

t' mass (GeV/c²)

Bonciani et al.

300

CDF Run 2 (5.6 fb⁻¹)

H_T vs. M_{reco} vs. N_{iet}

400

observed 95% CL

upper limit

450

500

o(pp→t't') (pb)

0.1

0.01

200

range of

expected 95% CL upper limits

250

After background suppression asymmetry is due to CP violation on the B meson mixing

Look at single muon asymmetry in the B meson system. Cancellation of systematics

Result: $A_{\rm sl}^{\ b} = -0.00787 \pm 0.00172 \text{ (stat)} \pm 0.00093 \text{(syst)}$

SM: $A_{\rm sl}^{\ b}({\rm SM}) = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$

Discrepancy of 3.9 σ

Periodic reversal of D0 solenoid and toroid magnetic field polarities cancells most detector-related asymmetries

D0 hep-ex: 1106.6308

CDF W + 2 jets

- Invariant mass of two jets
 - lepton $p_T > 20 \text{ GeV}$
 - 2 Jets p_T > 30 GeV
 - Dijet $p_T > 40 \text{ GeV}$
 - Missing $E_T > 25$ GeV
- For 4.3 fb⁻¹ an excess of 3.2 Sigma is found in the 120-160 GeV mass range!
- Additional 3.0 fb ⁻¹ of data: still an excess

PRL 106, 171801 (2011)

21

Combined data

http://www-cdf.fnal.gov/physics/ewk/2011/wjj/7_3

With new data: larger excess (4.1 standard deviation) consistent with expected from the 4.3 fb⁻¹
(Consistent with new particle resonance of 4 pb cross section)

Same selection as CDF
No excess observed
Limit for new resonance
Exclude a ressonance at the CDF mass value for 4 pb cross section

D0 hep-ex: 1106.1457

Conclusions

- The Tevatron is looking for complex final states
- At present no evidence in searches for new phenomena is confirmed in both experiments (data for 4-6.3 fb⁻¹)
- CDF excess in the W+2Jets events is not confirmed by Dzero
- Hints of new physics from b mesons
- Tevatron will stop at end of September 2011 with around 11 fb⁻¹ of data recorded per experiment

• Public webpages:

- http://www-cdf.fnal.gov/physics/exotic/exotic.html
- http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm