

(and other exclusive states)

Mike Albrow (Fermilab)

$$\underline{p + \overline{p} \rightarrow p + \gamma \gamma + \overline{p}}$$

3 Classes of Hadron-Hadron Collisions:

>> Elastic Scattering : no particles produced
>> Inelastic : multi- hadron production
>> Inelastic, with no hadrons produced

ALMOST ELASTIC

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

In CDF we have observed (>> 5 σ) the new clean process:

 $p + \overline{p} \rightarrow p + \gamma \gamma + \overline{p}$

Photons central, $E_T > 2.5 \text{ GeV}$

The cross section is about 2.5 pb, i.e. 1 per 25 billion inelastic collisions

Needed:

A good level 1 trigger (EM showers + Forward gap-seeds) Extended rapidity coverage of CDF to $\eta = \pm 7.4$ Understand noise levels in all calorimeters and counters. Demonstrate we understand "empty events" (non-interaction in 0-bias)

Use $p + \overline{p} \rightarrow p + e^+ e^- + \overline{p}$ via $\gamma\gamma$ (QED)

as a control (σ known)

Show that EM showers are from γ and not π^0

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

 $\sigma(elastic) \sim 20 \text{ mb}$

A "NEW" 3rd DISTINCT CLASS:

Observed in CDF, $\sigma \sim pb$

Observable at LHC, $\sigma \sim 10^{\circ}$ s fb

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

Elastic pp scattering at very small angles == large distances

The only allowed t-channel exchanges have Q = 0, Color = 0 and at high energy (Large Δy) spin J >= 1. <u>Photon</u> dominates at small $|t| \sim p_T^2$ <u>Strong Interaction: 2-gluons is simplest</u>. Called the <u>pomeron</u> IP Effective spin $\alpha(t=0) > 1 \dots$ that's why total cross section σ_{TOT} rises.

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

LISHEP July 2011

Interfere at intermediate b as not distinguishable Coulomb scattering: $\sim 1 \text{ fm}$ Dominates at large impact parameter b Photon γ (and calculable in QED modulo EM form factors) Which way did the photon go? Don't ask, it's spacelike Two gluon (IP) exchange: dominates at small impact parameter b < 1 fm $\sim 1 \text{ fm}$ (not calculable in QCD as $\alpha_{\rm S}(Q^2) > \sim 1$ Which way does the <u>pomeron</u> go? Don't ask, it's spacelike Beware of the diagrams

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

LISHEP July 2011

Elastic Scattering by strong interaction

MISLEADING PICTURE

Unlike the QED case, do not imagine this as the emission from one proton of a color singlet {gg} state (glueball) propagating freely like a hadron.

ANOTHER (BETTER) VISUALIZATION:

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

About 25% of σ_{TOT} About 10⁻¹¹ – 10⁻¹³ of σ_{TOT} These are related processes!

CDF: The Collider Detector at Fermilab

CENTRAL:

Silicon tracker COT **Drift chamber tracker** Time-of-Flight barrel **EM calorimeters w/ CES shower max PC** Hadron Calorimeters

Muon chambers

CES shower maximum proportional chambers at $6 X_0$ 1.5 cm anode wires in φ 1.7 - 2.0 cm strips in η 92% active over $|\eta| < 1.1$

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states. CDF

Forward Detectors in CDF I: Cherenkov Luminosity Counters

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

10

Very Forward Detectors in CDF II : MiniPlugs

MiniPlug Calorimeters: $3.6 < |\eta| < 5.1$ Lead + Liquid Scintillator + WLS Fibers

Rockefeller Univ.

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

6" 6" Beam Shower Counters (BSC) $5.5 < |\eta| < 7.4$ (Scintillators + PMT)

Rockefeller Univ.

BSC-1 (4 PMTs)

2 PMTs / stationMike AlbrowObservation of Exclusive γγ and other exclusive states in CDF

Central Exclusive Production, examples:

13

γ or IP exchange

 $p + p \rightarrow p + X + p$

where + = true rapidity gap, <u>no hadrons</u> and X = "simple" system fully measured.

States observed in CDF for first time in hadron-hadron collisions:

Figure 10: Feynman diagrams for processes contributing to the exclusive di-lepton signal. (a) $\gamma \gamma \rightarrow l^+ l^-$, (b) $\gamma I\!\!P \rightarrow J/\psi, \psi(2S), Z^0$, and (c) $I\!\!P I\!\!P \rightarrow \chi_{c0}$.

LPAIR MC: J.A.M.Vermaseren, Nucl.Phys.B229 (1983) 347

Photoproduction

SuperCHIC MC: L.Harland-Lang et al, arXiv:1005.0695 [hep-ph]

>>> Not essential to detect protons; can require all forward detectors to be at noise levels, for $|\eta| < ~7.4$ >>> Quasi-elastic protons inferred. >>> No pile-up interactions allowed.

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

<u>Theoretical prediction for exclusive $\gamma\gamma$ </u>

Later extended down to 2 GeV: L.Harland-Lang et al.

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

20

Trigger and Data Taking

2 EM towers ET > 2 GeV * BSC1 veto (kills P-U & many singles HAD/EM < 0.125; No prescale; 2×10^8 triggers recorded

One year 2006-2007, Integrated luminosity 1.11 ± 0.7 /fb Trigger rate peaks when $\frac{-n}{ne} = n$ is maximum, $L = 40 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$

"Exclusive efficiency" = Prob. event not killed by P-U, calculated bunch x bunch.

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

16

Selection of Exclusive Events

Require no other particles detected in entire CDF, including forward to $|\eta| = 7.4$ p & pbar are not detectable: stay in beam pipe. Study noise levels: ZERO-BIAS (bunch crossing) trigger (crucial). Make 2 classes: No COT tracks, no CLC hits, no muon stubs : **NON-INTERACTION** All other events : **INTERACTION** (or several interactions) For each sub-detector, plot "hottest" PMT signal or E_T signal (Log₁₀ scale handy) Choose cut separating noise from signals.

INTERACTION events below cut : interactions having no particles in BSC-l

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

Two more examples of noise studies and exclusive cuts:

Exclusive Filter Cuts			
Detector Part	max. Signal	$ \eta $ coverage	
Central EM Calorimeter (E_T) :	80 MeV	0 - 0.66	
Central HAD Calorimeter (E_T):	200 MeV	0 - 0.66	
End Wall EM Calorimeter (E_T) :	80 MeV	0.66 - 1.32	
End Wall HAD Calorimeter (E_T) :	200 MeV	0.66 - 1.32	
Mid Plug Calorimeter (E_T) :	80 MeV	1.32 - 2.11	
Forward Plug Calorimeter (E_T) :	30 MeV	2.11 - 3.64	
Mini Plug Calorimeter (E_T):	5 MeV	3.6 - 5.2	
BSC-1 (ADC):	400 counts	5.4 - 5.9	
BSC-2 (ADC):	300 counts	6.4 - 7.1	
BSC-3 (ADC):	400 counts	6.7 - 7.4	
CLC (Sum of West and East) (ADC):	6300	3.7 - 4.7	

Apart from 2 EM towers, events pass all exclusive cuts

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

18

19

Exclusive efficiency ε_{excl} :

Prob. good event not spoiled by another inelastic interaction (Pile-Up) Apply all noise cuts to **ZERO-BIAS** events (no EM towers). Measure P(0) = Prob(empty) vs Bunch luminosity (B x B)

[Not all the 36 bunch crossings have same Luminosity]

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

Probability all CDF empty vs bunch luminosity

= exclusive efficiency

$$P(0) = \overline{n} \cdot e^{-\overline{n}}$$

$$\overline{n} = \left(\frac{L_{bunch}}{46,500}\right) \times \sigma_{inel}$$

$$46,500 = \text{ orbits / sec}$$

$$\Rightarrow \sigma_{inel}$$
Intercept should be 1.0
$$\Rightarrow \text{ at } L = 0 \text{ all should pass}$$

noise kills event

Total L = 1114 pb⁻¹ Intercept = 0.98 ± 0.02 , Slope = 67 ± 4 mb $\varepsilon_{\text{excl}} = 0.068 \pm 0.004$; Leff = 75.8 pb⁻¹

Slope ~ "**Inelastic Cross section**": Not missing inelastic interactions

CDF : $\sigma_{TOT} = 80.0 \pm 2.2$ mb at $\sqrt{s} = 1800$ GeV $\sigma_{\rm ELASTIC} = 19.7 \pm 0.9 \text{ mb}$ $\Rightarrow \sigma_{INEL} = 60.3 \pm 2.4 \text{ mb at } \sqrt{s} = 1800 \text{ GeV}$ We are at $\sqrt{s} = 1960 \text{ GeV}$

Confidence that exclusive efficiency method and normalization are good LISHEP July 2011 Mike Albrow Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

2 EMO Central
$$|\eta| < 1.0$$
 and $E_T > 2.5$ GeV 82

Up to now NO TRACK REQUIREMENTS: Blind to COT Drift Chamber (& Silicon, Muons). Now look at COT tracker:

2 Opposite charge tracks (e^+e^-): 34 No tracks at all ($\gamma\gamma$, or $\pi^0\pi^0$?): 43

Ambiguous : $5(scan \Rightarrow 2 + 2 + 1)$

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

LISHEP July 2011 21

Event display: the highest mass e^+e^- event: $M(e^+e^-) = 20 \text{ GeV/c}^2$

Event: 1376604 Run: 223338

Tracking efficiency very high: hard to miss an isolated high p_T central track

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

22

Properties of e+e- events of LPAIR e+e- MC simulation + CDFSIM Absolute normalization!

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

Mass spectrum (e+e-)

Systematic uncertainties in back-ups

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

Mass spectra (e+e-): Other CDF results cf QED (LPAIR)

AGREEMENT

With LPAIR

CDF: Phys.Rev.Lett. 102 (2009) 222002 (Search for exclusive Z photoproduction)

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

25

How do we know if they are $\gamma\gamma$ or $\pi^0\pi^0$? Note that exclusive $\mathbf{p} + \gamma \pi^0 + \mathbf{p}$ is forbidden (e.g. parity P) Count showers in CES strip chambers. Wires I.45 cm, strips ~ I.8 cm Two photons cannot merge:

$$\theta(\gamma\gamma)_{\min} = 2 \times \left(\frac{m_{\pi}}{p_{\pi}}\right) = 3.2^{\circ} \text{ for } p_{\pi} = 5 \text{ GeV/c}$$

= 11.2 cm at 2 m.

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

26

Add # showers on both sides (there is no correlation)

Result: Best fit is with ZERO background from $\pi^0 \pi^0 \rightarrow 4 \gamma$ Pearson's χ^2 test: fraction of $\gamma\gamma$ events in sample < 16% (95% C.L.)

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

<u>Theoretical Prediction of p + \pi^0\pi^0 + p</u> (After our conclusion) L.Harland-Lang, V.Khoze, M.Ryskin and W.J.Stirling, arXiv:1105.1626

 $\sigma(\mathbf{p}+\pi^0\pi^0+\mathbf{p})$

Theoretically exclusive $\pi^0 \pi^0$ falls <u>much</u> faster with E_T or M than $\gamma\gamma$

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

LISHEP July 2011

Example of yy event

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

LISHEP July 2011

Normalization to equal area (shape comparison) Note differences: γ+γ vs IP+IP

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

30

Final results on

$p + \overline{p} \rightarrow p + \gamma \gamma + \overline{p} \text{ via } IP + IP (QCD)$

Systematic uncertainties in back-ups

Only prediction (Durham Group) has $\sim x \ 3$ uncertainties + PDF's : $g(x)^4$

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

31

Summary of Exclusive yy

We have observed (43 events, $>> 5 \sigma$) the new clean process:

$$p + \overline{p} \rightarrow p + \gamma \gamma + \overline{p}$$

We needed:

A good level 1 trigger (EM showers + Forward gap-seeds with BSC-1) Extended rapidity coverage of CDF to $\eta = \pm 7.4$ Understood noise levels in all calorimeters and counters.

Demonstrated understanding of "empty events" (non-interaction in 0-bias)

Used

as a control (σ known)

 $p + \overline{p} \rightarrow p + e^+ e^- + \overline{p}$ via $\gamma\gamma$ (QED)

Showed that EM showers are from γ and not π^0 as theoretically expected

Result ~ background – free, agrees with Durham prediction (on high side)

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

33 Fermilab April 09

Exclusive $\chi_c \rightarrow J/\psi + \gamma \rightarrow \mu^+ \mu^- \gamma$

Now allow photons: EM E_T spectrum with J/ ψ mass cut:

Mike Albrow

J/ ψ have photons : 286 \rightarrow 352 ψ (2S) do not : 39 \rightarrow 40

$$\chi_{\rm c} \longrightarrow J/\psi + \gamma$$

Kinematic fits of $\Delta \varphi(\mu + \mu -)$ and pT($\mu + \mu -)$ for events with γ shower agree with χ_c simulations. # $\chi_c = 65 \pm 8$

Exciting the Vacuum

Fermilab April 09

Summary of Results from

Quantity This analysis Theory $\frac{d\sigma}{dy}(y=0)J/\psi$ (nb) 3.92 ± 0.62 3.0 ± 0.3 $0.46^{+0.11}_{-0.04}$ $\frac{d\sigma}{du}$ $(y=0)\psi(2S) \text{ (nb)}$ $0.53 {\pm} 0.14$ $\frac{d\sigma}{dy}(y=0)\chi_c^\circ$ (nb) 76 ± 14 $130 \pm \approx 50$ <u>90 nb</u> $\sigma(box, QED, pb)$ 2.18 ± 0.02 2.7 ± 0.5 $\frac{d\sigma}{dy}(y=0)OIP \to J/\psi$ <2.3 nb (95% C.L.) J/ψ 0.052 ± 0.015 No Prediction χ_c

 $p + \overline{p} \rightarrow p + \mu^+ \mu^- + \overline{p}$ M = 3-4 GeV/c2

No evidence for odderon

Mike Albrow

Exciting the Vacuum

35 Fermilab April 09

Summary of Results

Quantity This analysis Theory $\frac{d\sigma}{dy}(y=0)J/\psi$ (nb) 3.92 ± 0.62 3.0 ± 0.3 $\frac{d\sigma}{dy}(y=0)\psi(2S)$ (nb) $0.46^{+0.11}_{-0.04}$ 0.53 ± 0.14 $\frac{d\tilde{\sigma}}{dy}(y=0)\chi_c^{\circ}$ (nb) 76 ± 14 $130 \pm \approx 50$ <u>90 nb</u> $\sigma(box, QED, pb)$ 2.18 ± 0.02 $2.7{\pm}0.5$

 $p + \overline{p} \rightarrow p + \mu^+ \mu^-(\gamma) + \overline{p}$

 $\left< p_{\rm T}(\gamma\gamma) \right> \left< \left< p_{\rm T}({\rm IP}) \right>$

Mike Albrow

Exciting the Vacuum

Fermilab April 09 36

M = 3-4 GeV/c2

Search for Exclusive Z production

PRL 102,222002 (2009)

Allowed in SM (like V) but $\sigma \sim 0.3$ fb (Motyka+Watt)

Could be enhanced by BSM loops

Interesting?! γ-IP-Z eff.coupling. ZOOM IN to see how!

e⁺e⁻ and $\mu^+\mu^-$, M > 40 GeV; 2.2fb-1, 31K, 183K in Z window 82-98 GeV Require no other interaction, no additional tracks, all calorimeters in noise (E)

Search was in "no-PU" events. Have 10 x data if PU allowed. Great LHC topic!

Mike Albrow

Exciting the Vacuum

Fermilab April 09

The Ultimate Vacuum Excitation

Above the χ_b , the only "known" heavier particle with vacuum Q.Nos. is the Higgs.

Vacuum is everywhere = Higgs field.

Hit the vacuum hard with a pair of weak probes, and you can promote them from Virtual \rightarrow Real

Same process from QCD perspective. u,d,s,c,b loops \rightarrow (b and) t loops Q² different. x(g) similar & χ_c, χ_b

 $\sigma(\text{SMH} \sim 120 \text{ GeV}) \sim 10 \text{ fb} (\text{MSSM bigger})$

Measuring both protons at 240m & 420m : $\sigma(M) \sim 2$ GeV/event S:B only a few. \rightarrow J=0, CP = ++, $\Gamma(H)$, Γ gg.

Technical Proposal being prepared to add very forward proton spectrometers to CMS & ATLAS in 2014

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

39

Class 3 Interactions at the LHC: "Inelastic, with no hadrons produced"

Consider WW + nothing (p's go down pipe, small p_T) $\sigma (\gamma \gamma \rightarrow W^+W^-) \sim 50 \text{ fb} \dots \text{ or } H + \text{ nothing}$

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

40

Conclusions: I

In CDF we have observed exclusive 2-photon production, i.e. $p + \overline{p} \rightarrow p + \gamma \gamma + \overline{p}$ with $E_T(\gamma) > 2.5$ GeV and with no hadrons.

43 events with background consistent with zero, and < 8 events (95% CL)

The cross section is ~ 2.5 pb, consistent with a theoretical prediction.

This confirms the picture of a hard pomeron as {gg}.

0

This is the first OBSERVATION of exclusive 2-photon production in hadron-hadron collisions.

Mike Albrow

Theoretical

Measured

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

We have also (earlier) observed: Exclusive e+e- and $\mu+\mu$ - pairs (QED: $\gamma\gamma \longrightarrow$) Exclusive J/ ψ and ψ (2S) ... photoproduction Exclusive IP + IP $\longrightarrow \chi_c$ (through c-quark loop) Exclusive IP + IP \longrightarrow Jet + Jet

These processes, especially χ_c and $\gamma\gamma$, confirm that at the LHC, if there is a Higgs boson, $p + p \longrightarrow p + H + p$ exclusive must happen, with $\sigma(SMH-120) \sim 10$ fb. More in MSSM scenarios...

→ 1000 x Acc. x Eff. events /year at 10^{34} cm⁻²s⁻¹. A few dozen events : M ($\sigma < 1$ GeV), J, CP, Γ_{gg})

Need to install high precision spectrometers at 240m >>> 420 m from IP

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

LISHEP July 2011 42

Thank you for your attention

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

LISHEP July 2011

Number of events after exclusive cuts		
Trigger:	200,143,239	
Presel: (2EMO > 2 GeV, $ \eta < 1.8$):	93,976,483	
Empty BSC counters (all):	39,099,062	
Empty Miniplug and CLC:	136,914	
Empty Forward Plug Calorimeter:	13,974	
Empty Mid Plug:	5,254	
Empty Low Plug:	1,359	
Empty Central Calorimeter:	421	
2 EMO Central $ \eta < 1.0$:	180	
2 EMO Central $ \eta < 1.0$ and $E_T > 2.5$ G	eV 82	

Up to now NO TRACK REQUIREMENTS:

Blind to COT Drift Chamber (& Silicon, Muons). Now look at COT tracker:

2 Opposite charge tracks $(e^+e^-): 34$

No tracks at all ($\gamma\gamma$, or $\pi^0\pi^0$?) : 43

Ambiguous : 5 (scan \Rightarrow 2 + 2 + 1)

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

LISHEP July 2011 44

Table: Statistics summary of all relevant parameters for the measurement of the exclusive e^+e^- for an E_T cut of 2.5 GeV and $|\eta| < 1.0$.

	Value	Stat. error	Syst. error
\mathcal{L}_{int}	1.11 fb ⁻¹	$\pm 0.7 \mathrm{pb}^{-1}$	
e ⁺ e ⁻ (events)	34		
Trigger efficiency	0.920	± 0.009	±0.018
Reconstruction efficiency	0.508	± 0.007	±0.016
Identification efficiency	0.912	± 0.017	±0.013
Tracking efficiency	0.963	0.003	
Radiative acceptance	0.419	± 0.001	± 0.077
Exclusive efficiency	0.0680	negligible	0.004
Dissoc. B/G (events)	3.8	0.4	0.9

$\sigma \eta < 1, E_T > 2.5 \text{GeV}$	_	2.88 ± 0.59 (stat) ± 0.62 (sys) nb	ר	
⁰ e ⁺ e ⁻ excl.	_	$2.00 \pm 0.00(300) \pm 0.02(333) \text{pb}$		BEE
$\sigma_{ extsf{LPair}}^{ \eta < 1, E_T > 2.5 extsf{GeV}}$	=	$3.25\pm0.07\text{pb}$		
$\sigma_{\rm e^+e^-excl.}^{ \eta <1,E_T>5.0{\rm GeV}}$	=	$0.60\pm0.28(\text{stat})\pm0.14(\text{sys})\text{pb}$		
$\sigma_{1,\text{Deriv}}^{ \eta <1,E_T>5.0\text{GeV}}$	=	$0.58 \pm 0.003 \mathrm{pb}$		JNCI

Confidence that exclusive efficiency method and normalization are good

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

45

$\rightarrow p + \gamma \gamma + \overline{p} \text{ via } IP + IP \text{ (OCD)}$ p+p-

Table: Statistics summary of all relevant parameters for the measurement of the exclusive photon pair cross section for an $E_{\rm T}$ cut of 2.5 GeV and $|\eta| < 1.0$.

	Value	Stat. error	Syst. error
Lint	1.11 fb ⁻¹	$\pm 0.7 ext{pb}^{-1}$	
$\gamma\gamma$ (events)	43		
Trigger efficiency	0.918	± 0.005	±0.018
Reconstruction efficiency	0.553	± 0.005	± 0.029
Identification efficiency	0.927	± 0.017	±0.013
Exclusive efficiency	0.0680	negligible	0.004
Conversion acceptance	0.568	± 0.001	± 0.063
π^0 background	0.0		<16% (95% C.L.)
Dissoc. B/G (events)	0.14		0.14

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

Rate of final events (per effective luminosity) independent of run period. **Trigger** efficiency (~ 92%) Efficiency of **HAD/EM** cut vs E(e) (~ 93%) Efficiency of **track finding/fitting** independent of η , p_T (~ 96%) : Using J/ ψ data +MC Efficiency of event not being lost by **radiation** (CDFSIM, ~ 40%)

Reconstruction efficiency: Full Monte Carlo simulation including reconstruction of electrons or photons.

- Values are low and more dependent on E_T and η (1–2)
- because of bremstrahlung, conversions, δ -rays.

Decided to select $|\eta| < 1.0$ to minimize such dependence.

Scanning events confirmed more ambiguities there: " $e \rightarrow \gamma$ " and " $\gamma \rightarrow e$ "

Reconstruction efficiency:

Electron pairs (LPAIR)			Photon
E _T cut (GeV)	2.5	5.0	<i>Е</i> т с
$\varepsilon_{rec}^{e^+e^-}$	0.508	0.802	$\varepsilon_{rec}^{\gamma\gamma}$
Stat Err	± 0.007	±0.017	Stat
Syst Err	± 0.016	± 0.037	Svst

Photon pairs (SuperCHIC)

E _T cut (GeV)	2.5
$\varepsilon_{rec}^{\gamma\gamma}$	0.553
Stat Err	± 0.005
Syst Err	± 0.029

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

47

Undetected p-dissociation e.g. $p \rightarrow p \pi^+ \pi^-$

Still $\gamma + \gamma$ or IP + IP but not truly exclusive. Consider as B/G

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

All our e^+e^- and $\mu^+\mu^-$ measurements agree with QED: So what?

- 1) It shows we know how to select rare exclusive events in hadron-hadron environment
- 2) No other h-h cross section is so well known theoretically except Coulomb elastic (inaccessible).
- Outgoing p-momenta extremely well-known (limited by beam spread). Calibrate forward proton spectrometers.
- 4) Practice for other $\gamma\gamma$ collisions at LHC:

 $\gamma\gamma \rightarrow W^+W^-, \widetilde{l}^+\widetilde{l}^-, \dots$

Has been considered as a calibration of luminosity monitors at LHC. Theory precise but acceptance, efficiencies and background (including p-dissociation) probably limit uncertainty to $\sim 2-3\%$

At LHC

8800 events in 1 fb⁻¹ with

 $M(\mu^+\mu^-) > 10 \text{ GeV and } |\eta| < 2$

Van der Meer scans can probably reach that with improvements

Mike Albrow

Exciting the Vacuum

Technical proposals under development to add precision p-detection: ATLAS : AFP = Atlas Forward Protons +/- 220m later 420m CMS : HPS = High Precision Spectrometers +- 240m (2014), 420m (2018) (Joint R&D was called FP420 ... many common solutions)

@ 240m: clear pipes. Moving pipe

Tracking: 1 µrad = 8 µm/8 m, Rad hard, edgeless, 2 cm² ~ 16 layers Timing: $\sigma(t) \sim 10$ ps: Cherenkov : gas with MCP-PMT; quartz with SiPMs. Precision mechanics, BPMs, reference time signals, ... $\sigma(t) = 10$ ps $\rightarrow \sigma(z) = 2.1$ mm cf $\sigma(z$, interactions) ~ 50 mm

Mike Albrow

Observation of Exclusive $\gamma\gamma$ and other exclusive states in CDF

Mike Albrow

Exciting the Vacuum

Fermilab April 09