

Forward physics at ATLAS

Andy Pilkington – IPPP Durham and Manchester Presented at LISHEP 2011, Rio De Janiero, Brazil, 7th July 2011

Soft-QCD measurements:

- 1) Inelastic cross section
- 2) Forward rapidity gap cross section

Perturbative-QCD measurements:

- 3) Forward jet cross section
- 4) Dijet production with a central jet veto

ATLAS – the big picture

LUCID

Total inelastic cross-section

arXiv:1104.0326 (accepted by Nature)

Total pp cross-section

- The total pp cross-section is traditionally measured in two ways
 - Measuring the elastic component (optical theorem, ALFA)
 - Cosmic ray measurements
- The inelastic part of the cross-section in pp collisions is usually divided into diffractive (SD,DD) and non-diffractive (ND) components:

$$\sigma_{\rm inel} = \sigma_{\rm nd} + \sigma_{\rm sd} + \sigma_{\rm dd}$$

- All experiments have incomplete acceptance for inelastic events.
- In the case of diffractive events, a large fraction events go undetected, specifically the *low-mass* part of the cross-section.
 - This also happens to be the part of the cross-section that has particularly large uncertainty from the theoretical perspective

The inelastic cross-section

The inelastic cross-section measurement at ATLAS is defined for relatively high mass events, using the ٠ variable $\xi = M^2/s$:

- Events selected using a minimum bias trigger requiring at least one MBTS scintillator counter above • threshold (MBTS: $2.1 < |\eta| < 3.8$).
- Offline selection requires at least two MBTS counters above a threshold. •
- For $\xi > 5.10^{-6}$, the MBTS acceptance is greater than 50%. ٠

- MC based correction for fraction of events passing selection from low-mass events

Inclusive MBTS hit multiplicity Used for inelastic measurement **Single-sided MBTS hit multiplicity** Defined as events with one side of MBTS empty

Used to constrain the diffractive component

- DL model with ϵ =0.085 and α' =0.25 GeV⁻² used as default parameterisation for MC-based corrections
- Other MC models used to assess uncertainties.

- Constraining the diffractive component reduces systematic uncertainty on inelastic cross-section
- Various other systematics studied, covering:
 - physics modelling,
 - detector simulation and response.
 - luminosity

- Ratio of single-sided events compared to generator level predictions (points)
- Diffractive fraction in each generator varied to produce $R_{ss} vs f_{D}$
- Using default DL parameterisation:

$$f_D = 26.9^{+2.5}_{-1.0}\%$$

	Source	Uncertainty $(\%)$
	Trigger Efficiency	0.1
	MBTS Response	0.1
	Beam Background	0.4
	f_D	0.3
	MC Multiplicity	0.4
	ξ -Distribution	0.4
	Material	0.2
	Luminosity	3.4
	Total	3.5

The inelastic cross-section (IV)

The inelastic cross-section (V)

Forward rapidity gap cross-section

ATLAS-CONF-2011-059

Forward rapidity gap cross section

Generator Δη^F

Detector-level gap algorithm

- Detector divided into 49 η-rings spanning the region
 -4.9 < η < 4.9.
- Ring is empty if it does not contain
 - Any track with $p_T > 200 MeV$ (for $|\eta| < 2.5$)
 - Any calorimeter cell above threshold $E/\sigma > S_{th}(\eta)$ (for $|\eta| < 4.9$)

Hadron-level gap-definition

- Phase space divided into same η-rings
- No stable particle with $p_T > 200 \text{MeV}$ and $|\eta| < 4.9$
 - Approximates threshold cut due to noise rise in forward regions

Forward rapidity gap cross-section (d σ /d Δ η_{F})

• Data corrected back to hadron-level using Migration Matrix and Bayesian unfolding method.

The University of Mancheste

۸ŋ

Rapidity gap cross section (II)

- To constrain diffractive modelling in MC use a *floating gap* approach
 - Rapidity gap defined as the largest successive span of empty η-rings
 - Events classified by the size of the rapidity gap and the starting point of the gap (defined relative to the edge of the detector)
- ND, SD and DD relative fractions allowed to vary in MC
 - Determine diffractive fraction to be $30.2 \pm 0.3 \pm 3.8$ % [central value from PYTHIA 8]
 - Constrained MCs used in detector correction procedure to reduce model dependence

The Universit of Mancheste

Rapidity gap cross section (III)

Inelastic cross-section measured as a function of a *forward rapidity* gap, $\Delta \eta_F$, defined as starting at the edge of the calorimeter ($\eta=\pm 4.9$)

- Data shown against default PYTHIA 6, PYTHIA 8 and PHOJET predictions
- Largest systematic uncertainties from unfolding and low-E_τ energy scale
- No MC can describe both small and large $\Delta\eta_{\text{F}}$ regions
- Diffractive cross-section of ~1mb per unit rapidity is predicted by KMR in arXiv: 1102.2844.

The University of Mancheste

Rapidity gap cross-section (IV)

- In the large $\Delta \eta_F$ regions, scrutinise the PYTHIA 8 and PHOJET contributions:
 - Both have similar SD prediction
 - PYTHIA 8 overshoots the data due to a very large DD contribution

Inclusive forward jet cross-section

ATLAS-CONF-2011-047

Inclusive forward jet cross section

- Inclusive jet cross-section is defined for all jets with a given p_{τ} and y ٠
 - High p_{τ} –forward jets are sensitive to PDFs at high-x and low-x
- Latest measurement is for anti- k_{τ} jets [R=0.4,0.6] with $p_{\tau} > 20$ GeV and y < 4.4 •
- Measuring forward jets significantly more challenging than central jets due to increasing Jet Energy Scale ٠ uncertainty

Forward jet with E=3.37TeV, η =4

Inclusive forward jet cross section (II)

Inclusive forward jet cross section (III)

Inclusive forward jet cross section (IV)

Dijet production with a central jet veto

ATLAS-CONF-2011-038

- **Dijet system** identified as the two highest p_T jets in the event with |y| < 4.5
- Gap events defined as the subset of events that do not contain an additional jet with p_T > 20 GeV in the rapidity interval bounded by the dijet system
- *Gap fraction* sensitive to all-order QCD phenomena, such as
 - BFKL-dynamics [when Δy is large]
 - Wide-angle soft-gluon radiation [when $ar{\mathbf{p}}_{\mathrm{T}}/\mathbf{Q_0}$ is large]
- Data corrected for experimental effects (i.e to hadron level)

Dijet production with a central jet veto (II)

- Spread of LO+PS generators is indicative of the theoretical uncertainty associated with applying a jet veto
- ALPGEN+HERWI+JIMMY surprisingly far from the data.

Dijet production with a central jet veto (IV)

Dijet production with a jet veto (V)

- Data compared to POWHEG predictions ٠
 - NLO-plus-parton-shower (for soft and collinear resummation)
 - POWHEG describes data well as $\, {ar p}_{
 m T}/{f Q_0} \,$ increases, but not as Δy increases.
- Data compared to HEJ predictions ٠
 - All-order prediction for hard wide-angle emissions
 - HEJ describes data well as Δy increases, but not as $\bar{\mathbf{p}}_{\mathrm{T}}/\mathbf{Q_0}$ increases.
- Remember that VBF topology includes two reasonably high- p_{τ} jets with large rapidity separation, plus ٠ a veto on a third jet!
- None of the theory predictions shown here do particularly well in this region of phase space ٠

The University of Mancheste

Summary of forward physics at ATLAS

Soft-QCD

- 1) Inelastic cross-section measured for $\xi > 5.10^{-6}$, and extrapolated to $\xi > m_p^2/s$
 - Large modelling uncertainty in extrapolation, due to low-mass diffraction
- 2) Forward rapidity gap cross-section measured for $\Delta \eta_F$ up to 7 (measured from calorimeter edge)
 - PYTHIA 6 & 8 both predict too large a gap cross-section; suggests that double diffractive contribution is too large in these models.

Perturbative-QCD

- 1) Inclusive jet cross-section measured for jets up to rapidities of 4.4
 - Large JES uncertainty covering spread of NLO-based theory predictions
- 2) Jet vetoes studied for dijet topologies
 - All theory predictions break down, either at large Δ y or at large $ar{\mathbf{p}}_{\mathrm{T}}/\mathbf{Q_0}$