

Top Mass and Cross Section at ATLAS

Mark Owen The University of Manchester On behalf of the ATLAS Collaboration

LISHEP 2011, July 2011

Mark Owen

Outline

- Why the top quark?
- Top production & decays
- LHC & ATLAS detector
- Top pair production cross section measurements
- Single top cross section measurement
- Top mass measurements
- Summary

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

MANCHESTER 1824 Why the top quark?

- In the SM it's the only quark:
- 1. With a natural mass:

$$m_{top} = y_t v / \sqrt{2} \approx 173 \text{ GeV} \Rightarrow y_t \approx 1$$

- Top quark interacts strongly with the Higgs sector special role in EWSB?
- 2. That decays before hadronizing:

$$\tau_{had} \approx 2 \times 10^{-24} s$$
$$\tau_{top} \approx 5 \times 10^{-25} s$$

• Top is a unique window on QCD & EW physics.

MANCHESTER 1824 Why the top quark?

• Higgs mass in the SM is sensitive to the top quark mass:

• In effective theory approach:

• For less than 90% cancellation:

 $\Lambda < 3 \ TeV$

• Top quark could be the place we see new physics.

Top Production

- Top pair production: QCD process, dominated by gg fusion.
 - Large cross section, $\sigma = 165 \text{ pb}$
 - Test perturbative QCD, large sample for top properties studies.
- Single top production: EW process
 - Smaller cross section: $\sigma_{t-chan} = 66 \text{ pb}$
 - Probe EW interactions of the top quark.

MANCHEST

Top Decays

- SM top decays ~100% to $W^{\pm}b$.
- Final states dictated by W boson decays.

Top pair final states:

All hadronic:

- 2 b-jets + 4 q-jets
- High Br
- Large multijet background

Lepton plus jets:

- e / µ + v + 2 b-jets + 2 q-jets
- Good Br
- Manageable backgrounds

Di-lepton:

- ee / μμ / eμ + vv + 2 b-jets
- Small Br
- Small backgrounds

MANCHESTER 1824 LHC & ATLAS

• Fantastic LHC performance:

- More tops on tape now than at a CDF or D0.
- Most results in this talk: 2010 data, L=35 pb⁻¹. Single top observation uses 2011 data (L=146 pb⁻¹).

Mark Owen

All Hadronic Search

- Select events with 6-jets, two of which must be identified as originating from b-decays using a secondary vertex tagger.
- Discriminate between signal & background with χ^2 :

$$\chi^2 = \sum_{i=1}^2 \left(\frac{m_{jjb}^i - m_t}{\sigma_t} \right)^2 + \left(\frac{m_{jj}^i - m_W}{\sigma_W} \right)^2$$

MANCHESTER

1824

MANCHESTER 1824 Lepton + Jets Cross Section

- Select events with high pT lepton, high transverse missing energy and multiple jets.
- Cross section can be extracted with and without the use of btagging information - provides confirmation it really is the top quark.
- Multijet backgrounds modelled using data, W+jets shape from simulation, but normalisation typically allowed to float.

MANCHESTER 1824 Lepton + Jets Cross Section

 Analysis without b-tagging combines 3 variables that separate top from W+jets in a likelihood discriminant:

Mark Owen

Fit templates to data - systematic uncertainties included in the fit and can be constrained by the data.

Largest systematic uncertainties from jet energy scale & reconstruction.

 $\sigma(t\bar{t}) = 171 \pm 17^{+20}_{-17}(syst.) \pm 6(lumi.)$ pb

MANCHESTER 1824 Lepton + Jets Cross Section

Analysis with b-tagging is similar, but adds continuous b-jet
 probability variable:

 ^{ATLAS} Preliminary μ+≥ 5 jets

MANCHESTER 1824 Dilepton Cross Section

- Select events with two opposite sign leptons.
- For ee & $\mu\mu$, reject Z events with MET and m_{II} selections.
- Backgrounds:
 - Z + jets for ee & µµ normalized in data control region
 - W + jets + QCD extracted from the data.
 - Diboson / single top from MC.

MANCHESTER 1824 Dilepton Cross Section

- Clean final state cross section extracted from counting events with at least two jets.
- Analysis with b-tagging uses looser kinematic selections.

Largest systematic uncertainties from JES, lepton ID, MC modelling & b-tagging.

 $\sigma(t\bar{t}) = 173 \pm 22^{+18}_{-16}(syst.)^{+8}_{-7}(lumi.) \text{ pb} \quad \text{(w/o b-tagging)}$ $\sigma(t\bar{t}) = 171 \pm 22^{+21}_{-16}(syst.)^{+7}_{-6}(lumi.) \text{ pb} \quad \text{(w/ b-tagging)}$

MANCHESTER 1824 Dilepton Cross Section

- Alternate techniques possible to cross-check primary results:
 - Perform 2D fit for cross-section & b-tag efficiency.
 - Add Z sample & perform 2D fit for cross-section & luminosity.
 - Perform 'inclusive' dilepton analysis by fitting n(jets), MET.

All results consistent -
top quark production
well established at LHC.

	$\sigma_{t\bar{t}}$ [pb]	σ_{WW} [pb]	$\sigma_{Z \to \tau \tau} \text{ [pb]}$
еμ	$163 \pm 28 \pm 14 \pm 6$	$46 \pm 26 \pm 9 \pm 2$	$1400 \pm 290 \pm 160 \pm 40$
All channels	171±22±14±5	59±21±12±2	$1400 \pm 290 \pm 160 \pm 40$
Theory	165^{+11}_{-16}	$46.2^{+2.3}_{-2.3}$	1076^{+54}_{-54}

Mark Owen

MANCHESTER 1824

Combination

 Combine untagged dilepton analysis with tagged lepton + jets analysis in a profile likelihood fit.

 Achieve 10% precision on top pair production cross section with 2010 data.

MANCHESTER Cross Section Summary

Results cross-checked with different methods.

All results consistent with each other & the SM prediction.

Further improvements expected with 2011 data.

Single Top

- Searches with 2010 data for t-channel & Wt production.
- New 2011 result observation of t-channel single top production.

MANCHESTER 1824 Single Top t-channel

- Select events with high p_T lepton, ==2 jets, one of which must be b-tagged.
- Backgrounds higher than top-pair production (W+jets events), plus must remove top-pair events.
- Use MET & M_T requirements to remove multijet events.
- Background modelling checked in 0 tag data:

MANCHESTER 1824 Single Top t-channel

• Two analyses: one using cuts on kinematic variables, the other a Neural Network discriminant:

	Cut-b	Neural	
	Lepton +	Lepton -	network
single-top t-channel	32.2 ± 11.7	13.3 ± 3.6	66.4 ± 19.6
single-top s-channel	0.3 ± 0.1	0.2 ± 0.1	0.9 ± 0.2
single-top Wt-channel	0.6 ± 0.2	0.6 ± 0.3	1.0 ± 0.2
tī	3.6 ± 1.8	3.2 ± 1.6	6.3 ± 3.0
W+light jets	2.6 ± 1.4	2.1 ± 2.6	9.0 ± 1.9
W+heavy flavour	14.9 ± 5.3	15.9 ± 5.4	35.8 ± 12.7
Diboson	0.3 ± 0.2	0.3 ± 0.1	0.4 ± 0.1
Z+jets	0.6 ± 0.5	0.5 ± 0.4	1.0 ± 0.8
Multijets	1.6 ± 1.2	0.7 ± 0.9	3.6 ± 2.8
TOTAL Exp	56.9 ± 13.0	36.8 ± 7.2	124.4 ± 23.7
S/B	1.31	0.57	1.14
DATA	72	43	134

Mark Owen

MANCHESTER 1824 Single Top t-channel

• Cross section extracted from profile-likelihood ratio fit.

 $\sigma_t = 76^{+41}_{-21} \text{ pb (NN)}$

 $\sigma_t = 97^{+54}_{-30} \text{ pb (cuts)}$

- Significance of result compared to background-only model is 6.2σ (5.7σ expected) for NN, 6.1σ (4.4σ expected) for cut based.
- Dominant systematics: Signal modelling, b-tagging.

- Lepton plus jets channel allows direct reconstruction of the top quarks from the decay products.
- Can reconstruct the top mass from the 3 jet (bjj) mass.
- To reduce sensitivity to JES use:

- Use 1D template fit to extract the mass.
- Signal templates parameterized as a function of m_t, background template independent of m_t.

Mass extracted from binned likelihood fit:

 $m_t = 169.3 \pm 4.0(stat.) \pm 4.9(syst.) \text{ GeV}$

Tevatron July 2010 combination:

 $m_t = 173.3 \pm 0.6 \pm 0.9 \text{ GeV}$

Dominant systematics	e-channel	µ-channel
ISR and FSR (sig. only)	2.2 GeV	2.6 GeV
Jet energy scale	2.3 GeV	1.9 GeV
b-jet energy scale (±2.5%)	2.5 GeV	2.5 GeV
Total systematic uncertainty	4.8 GeV	5.0 GeV

• Primary result is cross checked with two other methods:

Full kinematic fit to reconstruct entire event, then use template fit:

Simultaneous fit to m_t & overall JES factor:

- All three methods give consistent results.
- Main analysis has 3.7% precision.
- Looking ahead:
 - Improvements in JES.
 - Exploit new data.

MANCHESTER 1824 Top Mass from Cross Section

- Standard top mass extract relies on the top mass parameter in the MC.
- Not clear theoretically which renormalization scheme this mass corresponds to.
- Independent approach: Extract the mass by comparing measured top pair production cross section with theory.
 - Mass is well defined in the theoretical calculation.

MANCHESTER 1824 Top Mass from Cross Section

 Extraction obtained using lepton + jets cross section measurement:

$m_t^{pole} = 166.4^{+7.8}_{-7.3} \text{ GeV}$

• Consistent with direct measurements and equivalent D0 analysis.

Summary

• First year of LHC data has already led to precision measurements of the top pair production cross section.

 First 2011 data has allowed observation of single top production at ATLAS.

• First top mass measurements performed.

• Stay tuned for more results with 2011 data later in the Summer.

Backup

Mark Owen

MANCHESTER 1824 Wt Search Result

- Use lepton + jet events like for t-channel, but optimise the cuts.
- In addition include the di-lepton channel.

 $\sigma_t < 158 \ pb$ observed $\sigma_t < 94 \ pb$ expected