V+gamma and V+Jets Production at Hadron Colliders

Theory Overview

Fernando Febres Cordero

Simon Bolivar University, Caracas, Venezuela

LISHEP, Rio de Janeiro, Brazil - July 2011

OUTLINE – RELEVANT TOPICS

V+gamma

Radiation Zeros: A story of more than three decades QCD and Electroweak Corrections Pair Production of Vector Bosons

V+Jets

Large multiplicity processes at NLO: *W*+ *n* Jets (*n* = 0,1,2,3,4) Weak Vector Boson Polarization at the LHC Showering at NLO

OUTLINE

V+gamma

Radiation Zeros: A story of more than three decades

QCD and Electroweak Corrections

Pair Production of Vector Bosons

V+Jets

Large multiplicity processes at NLO: W+n Jets (n = 0,1,2,3,4) Weak Vector Boson Polarization at the LHC Showering at NLO

TESTING GAUGE STRUCTURE IN THE SM

$$q_{i}(k_{1})\overline{q}_{j}(k_{2}) \rightarrow W^{\pm}(p)\gamma(k)$$
This process allows to measure the trilinear WWy coupling
$$q_{i}(k_{1}) \xrightarrow{W^{\pm}(p)}_{q_{i}(k_{2})} = \bigoplus_{(a)} + \bigoplus_{(b)} \bigoplus_{(c)} \bigoplus$$

7/6/2011

V+gamma & V+Jets

-1.0 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1.0 cos 0

A CURIOUS RADIATION ZERO

Mikaelian, Samuel, Sahdev; PRL 1979

 Θ is the angle between W^{-} and d

Bern, Carrasco, Johansson ; arXiv:0805.3993

For $cos \theta = -1/3$; the diff cross section vanishes!

Goebel, Halzen, Levielle; PRD 1981

Actually the amplitude vanishes, due to factorization properties!

Indeed they prove that by general properties (mom conservation, on-shellness, charge conservation) 4-point gauge amplitudes can be arranged in forms like:

Almost 3 decades later, the "spatial generalized Jacobi identity" used by GHL in their study, would be generalized to higher point amplitudes within the so called BCJ identities: Useful tool for gauge and gravity amplitudes!

RADIATION AMPLITUDE ZERO MEASURED!

At the hadron level the RAZ shows as a dip in the ($\eta_e - \eta_{\gamma}$) distribution. QCD corrections reduce slightly its size. Possible aTGCs basically wash it out.

OTHER RECENT WY AND ZY MEASUREMENTS

CMS (arXiv:1105.2758) has made Wy and Zy measurement with a 36 pb^{-1} data set

They see agreement with the SM prediction of a RAZ

Constrained (CP-conserving) aTGCs (WWγ, ZZγ and Zγγ)

ATLAS (arXiv:1106.1592) has made Wγ and Zγ measurement with a 35 pb⁻¹ data set

Made a dedicated study of total and diff cross sections

Discusses Wy / Zy ratios. Don't show RAZ or aTGCs studies.

OUTLINE

V+gamma

Radiation Zeros: A story of more than three decades

QCD and Electroweak Corrections

Pair Production of Vector Bosons

V+Jets

Large multiplicity processes at NLO: W+n Jets (n = 0,1,2,3,4) Weak Vector Boson Polarization at the LHC Showering at NLO

QUANTUM CORRECTIONS TO Wy and Zy PRODUCTION

Original work on the impact of QCD corrections in Wγ production was performed by Smith, Thomas and van Neerven in the late 80's	Smith, Thomas, van Neerven; Z.phys.C 1989		
Ohnemus also studied Wγ and added QCD corrections to Zγ production	Ohnemus; PRD 1991		
Studies of QCD corrections for general TGCs	Baur, Han, Ohnemus; PRD 1993		
Fully differential studies at NLO	de Florian, Signer ; hep-ph/0002138		
Fully differential (partial) Electroweak corrections	Hollik, Meier ; hep-ph/0402281 Accomando, Denner, Meier ; hep-ph/0509234		
Very recent update on general Vector Boson Pair production (including γ radiation from leptons)	Campbell, Ellis, Williams; arXiv:1105.0020		

INCLUDED INTO MCFM (v6.0): A PARTON LEVEL NLO MONTECARLO PROGRAM TOOLS (1/3)

QCD CORRECTIONS: BRIEF RECOUNT

ELECTROWEAK CORRECTIONS: BRIEF RECOUNT

Accomando, Denner, Meier ; hep-ph/0509234

OUTLINE

V+gamma

Radiation Zeros: A story of more than three decades

QCD and Electroweak Corrections

Pair Production of Vector Bosons

V+Jets

Large multiplicity processes at NLO: W+n Jets (n = 0,1,2,3,4) Weak Vector Boson Polarization at the LHC Showering at NLO

TOOLS (1/3): NLO PARTON LEVEL MONTECARLOS

- Importance of computing quantum correction is clear (better modeling of underlying theories; decrease sensitivity to unphysical scales; good shapes of distributions; etc)
- Often involves cumbersome calculations: So theorist tend to be "busy" with details
- Theory publications can never cover all interesting kinematic scenarios and observables
- So it is important that theorists hand out **TOOLS** that allow experimental collaborations to readily study signals and backgrounds at the best available precision

Campbell, Ellis, Williams; arXiv:1105.0020

An example: VV PRODUCTION@NLO WITH MCFM (v6.0)

- Latest MCFM release completed the set of all calculations of VV production at NLO QCD
- This includes $\gamma\gamma$, $W\gamma$, $Z\gamma$, WW, WZ and ZZ production!
- Also allows for studies of different photon isolation schemes

Campbell, Ellis, Williams; arXiv:1105.0020

But we might be interested into learn much more than just scale dependence!!!

Campbell, Ellis, Williams; arXiv:1105.0020

Campbell, Ellis, Williams; arXiv:1105.0020

APPLY THESE DIFFERENT SET OF CUTS

Basic Photon : $p_T^{\gamma} > 10 \text{ GeV}, |\eta_{\gamma}| < 5, R_{\ell\gamma} > 0.7, R_0 = 0.4, E_T^{max} = 3 \text{ GeV}.$ $M_T \text{ cut} : \text{Basic Photon} + M_T > 90 \text{ GeV}.$

Lepton cuts : $M_T \text{ cut} + E_T^{\text{miss}} > 25 \text{ GeV}, \ p_T^{\ell} > 20 \text{ GeV}, \ |\eta_{\ell}| < 2.5.$

	Decay	Cuts	$\sigma^{LO}(e^+\nu\gamma)$	$\sigma^{NLO}(e^+\nu\gamma)$
	No FSR	Basic γ	4.88	8.74
AND LOOK AT THE		M_T cut	1.99	3.78
TOTAL RATES:		Lepton cuts	1.49	2.73
	Full	Basic γ	23.0	30.1
		M_T cut	2.12	3.94
		Lepton cuts	1.58	2.85

- Many similar questions can be answered in a similar way DIRECTLY by the user of MCFM.
- Notice that MCFM contains many other interesting processes, including V+n Jets (n = 0,1,2).
- This approach is really efficient as long as one can keep computer needs moderate; i.e. running with few variations of inputs (couplings, PDFs, jet algs, etc) and for (relatively) low multiplicity studies.

Depending on the needs, exists several similar programs: like DIPHOX; NLOJet++; JetPHOX; VBFNLO ; etc, etc...

OUTLINE

V+gamma

Radiation Zeros: A story of more than three decades QCD and Electroweak Corrections Pair Production of Vector Bosons

V+Jets

Large multiplicity processes at NLO: W+n Jets (n = 0, 1, 2, 3, 4)

Weak Vector Boson Polarization at the LHC

Showering at NLO

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 (f_L - f_R)

CMS Pol Measurement

arXiv:1104.3829

V + Jets at NLO for SUSY Searches

We need: $pp \rightarrow W + 1,2,3,4$ -jets

New technology to deal with the Gluon Mess!

1-loop Amplitudes from Unitarity

[Britto, Cachazo, Feng hep-th/0412103]

$$\boldsymbol{b}_{i} = A_{(1)}^{\text{tree}} A_{(2)}^{\text{tree}} A_{(3)}^{\text{tree}} A_{(4)}^{\text{tree}}$$

And then one can extract all coefficients! [Ossola, Papadopoulos, Pittau hepph/0609007] [Ellis, Giele, Kunszt arXiv:0708.2398] [Forde arXiv:0704.1835]

A Powerful Technique!

BUT STILL VERY COMPUTER INTENSIVE

[BlackHat + Sherpa]

NTUPLES: STORE THE MORE INFORMATION YOU CAN IN YOUR COMPUTATION!

TOOLS (2/3)

TOOLS (2/3): NLO NTUPLES BlackHat+Sherpa

- (Large multiplicity) NLO predictions are CPU expensive
- While generating events for a NLO computation, save in files:
 - Parton information (momenta, flavor)
 - Weight
 - Factorisation and renormalisation scales
 - Additional information for scale and pdf change

• These files, "the ntuples", would be the main results from a theory computation: We can share these files with other theorist and experimentalists

TOOLS (2/3): NLO NTUPLES BlackHat+Sherpa

- Advantages:
 - No need for the end user to run a complicated NLO setup
 - Can produce many plots from the same run
 - Can change scales/pdf
 - Share parts of the computation
- Disadvantages:
 - Large files

Wm2j 7TeV					
part	N of files	total events	size of a file	disk/Mevent	total disk usage
born	8	40M	709M	140M	5.7G
bornLO	8	40M	695M	140M	5.6G
real	300	750M	2.8G	1136M	840G
vsub	20	200M	2.7G	270M	54G
loop	100	100M	177M	177M	17.7G
total	436	1130M			923G

OUTLINE

V+gamma

Radiation Zeros: A story of more than three decades QCD and Electroweak Corrections Pair Production of Vector Bosons

V+Jets

Large multiplicity processes at NLO: W+n Jets (n = 0, 1, 2, 3, 4)

Weak Vector Boson Polarization at the LHC

Showering at NLO

Leptonic E_T in W + 3 jets at LHC

[Berger, et al arXiv:0907.1984]

W+/W- transverse lepton ratios trace a remarkably large and stable left-handed W polarization at large p_T(W)
– independent of number of jets
– will be useful to separate W + n jets from top, maybe also from new physics

 $W^{+/-}$ + n jets: Neutrino E_{τ}

NLO LO

BlackHat: [arXiv:1103.5445]

Effect independent of multiplicity! Almost no difference from NLO and LO!

Similarly for charged lepton E_{τ}

Actual W polarization

BlackHat: [arXiv:1103.5445]

Top quark pairs very different

BlackHat: [arXiv:1103.5445]

Main production channels are CP invariant:

$$gg \to t\overline{t} \qquad q\overline{q} \to t\overline{t}$$

Semi-leptonic decay involves (partially) left-handed W⁺

$$t\overline{t} \to bW^+\overline{b}W^- \to b\,e^+\nu\,\overline{b}jj$$

But conjugate decay involves (same degree) right-handed W⁻

$$t\bar{t} \to bW^+\bar{b}W^- \to bjj\,\bar{b}\,e^-\bar{\nu}$$

 \rightarrow electron and positron have almost identical p_T distributions

→ A nice handle on separating W+jets from top

OUTLINE

V+gamma

Radiation Zeros: A story of more than three decades QCD and Electroweak Corrections Pair Production of Vector Bosons

V+Jets

Large multiplicity processes at NLO: W+n Jets (n = 0, 1, 2, 3, 4)

Weak Vector Boson Polarization at the LHC

Showering at NLO

NEED TO GO BEYOND PARTON LEVEL NLO

- Although parton level NLO QCD correction are a necessity, certainly they have a limited reach
- Experimental data are often "corrected" to parton level, unfolding non-perturbative effects (hadronization, underlying event) and shower effects
- This is far from optimal: *Theory should get close to data, not the other way around!*
- Algorithms to have consistent NLO showers are needed

TOOLS (3/3): NLO SHOWER ALGORITHMS

- Great advances over the last years on automation of consistent NLO showers: in particular within the MC@NLO program and with the POWHEG method
- Several automated codes exist in the market: The POWHEG Box, POWHEG in SHERPA, aMC@NLO, etc
- More and more processes included within these frameworks

An example: Vbb PRODUCTION

TOOLS (3/3): An Example: Vbb Production

An NLO shower is particularly desirable for this process!

V+gamma & V+Jets

Closing Remarks

- Weak vector boson production in association with a photon or with jets are very important ways in the exploration of the validity of the SM
- The relevance of developing TOOLS useful for experimentalists
 - (1/3) Parton Level NLO Montecarlos
 - (2/3) Ntuples for complex high multiplicity calculations
 - (3/3) Consistent NLO (QCD) showering program
- Theory community have been busy keeping up with the challenges that the LHC presents
- Hope for more Theorist/Experimentalist collaborations!!!

BACKUP SLIDES...

Numerical Stability

- Virtual contribution
- gd → e⁻ v̄gggu
- Test over physical phase space (10⁵ PS points)

 Locally compute with more digits when needed (double, quadruple,...)

2009: NLO W+3j [Rocket: Ellis, Melnikov & Zanderighi] 2009: NLO W+3j [BlackHat: Berger et al] 2009: NLO $t\bar{t}b\bar{b}$ [Bredenstein et al] 2009: NLO $t\bar{t}b\bar{b}$ [HELAC-NLO: Bevilacqua et al] 2009: NLO $q\bar{q} \rightarrow b\bar{b}b\bar{b}$ [Golem: Binoth et al] 2010: NLO $t\bar{t}jj$ [HELAC-NLO: Bevilacqua et al] 2010: NLO $t\bar{t}jj$ [BlackHat: Berger et al] 2017: NLO W+4j [BlackHat: Berger et al]

[unitarity] [unitarity] [traditional] [unitarity] [traditional] [unitarity] [unitarity] [unitarity]

Look Out for Scales at the LHC

$$\mu = E_T^W \equiv \sqrt{M_W^2 + p_T^2(W)}$$

Complicated processes have many scales.

LHC has a much greater dynamic range than Tevatron; M_W not characteristic scale.

Other signs of bad scale choice:

- Negative cross section.
- Large LO/NLO ratio.
- Rapid growth of scale bands with

The Trouble with E_T^w

Consider these 2 configurations:

- For (a) $\mu = E_T^W \equiv \sqrt{M_W^2 + p_T^2(W)}$ physical scale of interactions.
- •For (b) E_T^W may be low and underestimating the physical scale.

Looking at large E_{τ} for the 2nd jet forces configuration (b).

- The total (partonic) transverse energy is a better variable; gets large for both (a) and (b).
- Other reasonable scales are for example *invariant mass of the n jets* [Bauer, Lange arXiv:0905.4739] or *local scales* (at LO) inspired in CKKW1reweighting [Melnikov, Zanderigh & ArXiv:0910.3671]

See also: Mangano, Parke '90; Frixione '93; Arnold, Reno '89; Baur, Han, Ohnemus (9507336); Bozzi Jager, Oleari, Zeppenfeld (0701150)

$$\hat{H}_T = \sum_p E_T^p + E_T^e + E_T^\nu$$

Compare Two Scale Choices

Message: Do not use $\mu = E_T^W$

- LO/NLO ratio sensible.
- NLO scale dependence very good.

$pp \rightarrow W+4$ jets @ the LHC

[BlackHat, arXiv:1009.2338]

- First ever $2 \rightarrow 5$ NLO
- Used in recent ATLAS tt⁻ results measurement
- Leading color virtual. Will add in subleading color soon (~3% effect).

$pp \rightarrow W+4$ jets @ the LHC

[BlackHat, arXiv:1009.2338]

• First ever $2 \rightarrow 5$ NLO

no. jets	W^- LO	W^- NLO	W^+/W^- LO	W^+/W^- NLO	$W^-n/(n-1)$ LO	$W^-n/(n-1)$ NLO
0	$1614.0(0.5)^{+208.5}_{-235.2}$	$2077(2)^{+40}_{-31}$	1.656(0.001)	1.580(0.004)		
1	$264.4(0.2)^{+22.6}_{-21.4}$	$331(1)^{+15}_{-12}$	1.507(0.002)	1.498(0.009)	$0.1638(0.0001)^{+0.044}_{-0.031}$	0.159(0.001)
2	$73.14(0.09)^{+20.81}_{-14.92}$	$78.1(0.5)^{+1.5}_{-4.1}$	1.596(0.003)	1.57(0.02)	$0.2766(0.0004)^{+0.051}_{-0.037}$	0.236(0.002)
3	$17.22(0.03)^{+8.07}_{-4.95}$	$16.9(0.1)^{+0.2}_{-1.3}$	1.694(0.005)	1.66(0.02)	$0.2354(0.0005)^{+0.034}_{-0.025}$	0.216(0.002)
4	$3.81(0.01)^{+2.44}_{-1.34}$	$3.55(0.04)^{+0.08}_{-0.30}$	1.812(0.001)	1.73(0.03)	$0.2212(0.0004)^{+0.026}_{-0.020}$	0.210(0.003)

SUSY searches

- Gluinos/squarks are pair produced
- Generic signature is MET + jets

How can SM mimic this?

- $W \rightarrow I^{\pm}\nu$ with undetected lepton
- QCD with mismeasured jet
- $Z \rightarrow \nu \overline{\nu}$ Irreducible background subject of this talk

Data Driven Background Estimation

Bern, Diana, Dixon, FFC, Hoche, Ita, Kosower, Maitre, Ozeren; arXiv:1106.1423

CMS uses photons to measure Z (Incandela's Group)

- Can also use $Z \to \mu \overline{\mu}$, but γ has better statistics
- So what is the conversion factor R?

Photon Isolation a la Frixione [hep-ph/9801442]

- In pQCD, have to be careful to preserve Infra-Red Safety
- Can't veto QCD radiation arbitrarily!
- Frixione: "here is a way to remove frag. photons in an IR safe way"

$$\sum_{i} E_{iT} \theta(\delta - R_{i\gamma}) \le H(\delta)$$
$$H(\delta) = E_T^{\gamma} \epsilon \left(\frac{1 - \cos \delta}{1 - \cos \delta_0}\right)^n$$

- Important: $H(\delta) \rightarrow 0$ as $\delta \rightarrow 0$
- We choose $\epsilon = 0.025, \delta_0 = 0.3, n = 2$

Preliminary Results Z/y ratio

Plot of Z/γ ratio

Bern, Diana, Dixon, FFC, Hoche, Ita, Kosower, Maitre, Ozeren; arXiv:1106.142

process	LO	ME+PS	NLO
$\gamma + 2j$	$2.220^{+0.762}_{-0.526}$	2.110	$2.609^{+0.159}_{-0.241}$
Z + 2j	$0.521^{+0.180}_{-0.124}$	0.478	$0.560^{+0.012}_{-0.043}$
ratio	0.235	0.226	0.214

- Ratio roughly constant across phase space
- Good agreement between NLO / MEPS
- Take difference as error estimate, as scale variation largely cancels in ratio