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Neutrino Mass beyond the SM

• SM: effective low energy theory

• new physics effects suppressed by powers of new physics scale M

• neutrino masses generated by dim-5 operators -- lowest order higher dimensional 
operator

• high M  ⇒  small mν 

• total lepton number and individual family lepton numbers broken 

• lepton mixing expected

• µ → e γ (MEG @ PSI)  ;   µ - e conversion (Mu2e @ Fermilab) ;
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L = LSM +
O5D

M
+
O6D

M2
+ ... (1)

1

}

new physics effects

λij

M HHLiLj ⇒ mν = λij
v2

M
λij are dimensionless couplings;

M is some high scale
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What if Neutrinos Have Mass?

• Similar to the quark sector, there can be mismatch between mass eigenstates and weak 
eigenstates

• weak interactions eigenstates: νe, νμ, ντ

• mass eigenstates: ν1, ν2, ν3

• Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix

3

sin 2β = 0.672+0.069
−0.07

γ (deg) = 71+46
−45

α (deg) = 89+21
−13

τ(p → e+π0) > 8.2× 1033 years (90% CL, SuperK 2009) (1)

τ(p → νK+) > 2.3× 1033 years (90% CL, SuperK 2005) (2)

V †
e,RMeVe,L = diag(me,mµ,mτ )

V T
ν,LMνVν,L = diag(m1,m2,m3)

1
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Leptonic Mixing Matrix

• Three neutrino case:

• two mass differences:

• three mixing angles:  

• three CP phases: 

• CP violation in neutrino oscillation sensitive to Dirac phase, δ
• neutrinoless double beta decay sensitive to Majorana phases, Φ12,  Φ13  
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Leptonic Mixing Matrix

Two mass differences:

Three families mixing:

                    atm                      reactor                         solar                 Majorana phases

          3 mixing angles:

        3 complex phases:

       CP violation in neutrino oscillations sensitive to

       Neutrinoless double-beta decay sensitive to
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Compelling Evidences of Neutrino Oscillation 
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Atmospheric Neutrinos:  
SuperKamiokande (up-down asymmetry, L/E, θz dependence of μ-like events), K2K

 dominant channel:
next:  MINOS, NOvA, T2K,...

Solar Neutrinos:  
Homestake, Kamiokande, SAGE, GALLEX/GNO, SK, SNO, BOREXINO, 
KamLAND

dominant channel:
next:  BOREXINO, ...

νµ and νµ disappear

νe and νe do not

P (νa → νb) =
���νb|ν, t

���2 � sin2 2θ sin2

�
∆m2

4E
L

�

νµ → ντ

ν�L =
3�

j=1

U�jνjL � = e, µ, τ

U = V




1 0 0
0 eiα21/2 0
0 0 eiα31/2





V =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





ν1, 2, 3 → m1, 2, 3

Lcc = ( ν1, ν2, ν3 )γµU†




e
µ
τ



 W+
µ

V =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1





δ = [0, 2π]

α21, α31

1

νe → νµ,τ

M1 ∼ 109
− 1012 GeV

M1 < 109 GeV

YB =
nB − nB

s
∼ 8.6× 10−11

YB � 10−2�κ

κ : efficiency factor ∼ (10−1
− 10−3)

mν ∼

�
∆m2

atm ∼ 0.05 eV, mD ∼ mt ∼ 172 GeV

⇒MR ∼ 1015GeV

light neutrino mass: mν ∼
mD

MR
mD

φ1 : one of the Majorana phases

small symmetry breaking parameter η � 1 :

sin θ13 ∼ η ∼ 10−2, � ∼ 10−6 can be generated

sin θ13 = 0 ⇒ J lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31

Im(yDy†D) = 0

(MDM†
D)11

M1
∝

�
mc

mt

�2

vL < O(10−7) eV

1

Details see Talk by Hiro Tanaka
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“Anomalies”?
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MiniBoone:  
  neutrino mode:  
      E < 475 MeV: unexplained 3σ e-like excess 
      E > 475 MeV: 2-neutrino fit inconsistent with LSND at 90% CL
  anti-neutrino mode:  

      E < 475 MeV: small 1.3σ e-like excess 
      E > 475 MeV: an excess consistent with null at 3%; 
           2-neutrino fit consistent with LSND at 99.4% CL
inconsistency between neutrino and anti-neutrino mode ⇒ CPT violation?

LSND Anomaly:  if true ⇒ sterile ν with ∆m2 ~ (0.1-1) eV2 

dominant channel:                   (3.8σ excess)
re-calculation of pion production cross-section for      background: 
excess reduced to 3σ 

νµ → νe

νe → νµ,τ

M1 ∼ 109 − 1012 GeV

M1 < 109 GeV

YB =
nB − nB

s
∼ 8.6× 10−11

YB � 10−2�κ

κ : efficiency factor ∼ (10−1 − 10−3)

mν ∼
�

∆m2
atm ∼ 0.05 eV, mD ∼ mt ∼ 172 GeV

⇒MR ∼ 1015GeV

light neutrino mass: mν ∼
mD

MR
mD

φ1 : one of the Majorana phases

small symmetry breaking parameter η � 1 :

sin θ13 ∼ η ∼ 10−2, � ∼ 10−6 can be generated

sin θ13 = 0 ⇒ J lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31

Im(yDy†D) = 0

1
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“Anomalies”?
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MiniBoone:  
  neutrino mode: excess inconsistent with LSND
  anti-neutrino mode: excess consistent with LSND

Reactor Anomaly:  

LSND Anomaly:  

dominant channel:                   (3.8σ excess)
re-calculation of pion production cross-section for  background: excess 
reduced to 3σ 

νµ → νe

νe → νµ,τ

M1 ∼ 109 − 1012 GeV

M1 < 109 GeV

YB =
nB − nB

s
∼ 8.6× 10−11

YB � 10−2�κ

κ : efficiency factor ∼ (10−1 − 10−3)

mν ∼
�

∆m2
atm ∼ 0.05 eV, mD ∼ mt ∼ 172 GeV

⇒MR ∼ 1015GeV

light neutrino mass: mν ∼
mD

MR
mD

φ1 : one of the Majorana phases

small symmetry breaking parameter η � 1 :

sin θ13 ∼ η ∼ 10−2, � ∼ 10−6 can be generated

sin θ13 = 0 ⇒ J lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31

Im(yDy†D) = 0

1

MINOS:  
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I.Bigi, 1982; Murayama, 
Yanagida, 2001

R. Van de Water @ Neutrino 2010



“Anomalies”?
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Reactor Antineutrino Anomaly:  
improved predictions for reactor anti-neutrino flux
normalization shifted by +3% 
sterile neutrino with ∆m2 > (1.5) eV2 and sin22θ = 0.14 ± 0.08
   (cosmology?)

MINOS:  
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arXiv:1103.0340; 1104.0344

consistent @ 2% CL 

Mueller et al, arXiv:1101.2663; Mention, Fechner, Lasserre, 
Mueller, Lhuillier, Cribier, Letorneau, arXiv:1101.2755

CPT violation? 



First Indication of θ13 ≠ 0
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First Indication of θ13 ! 0

• T2K (06/18/11)  

• MINOS latest result on nu_e appearance  (Fermilab Wine & Cheese Today)

7

First Indication of θ13 ! 0

• T2K (06/18/11)  

• MINOS latest result on nu_e appearance  (Fermilab Wine & Cheese Today)

7

7/1/11 5:16 PMnuecontour2011.png 529×775 pixels

Page 1 of 1http://www-numi.fnal.gov/PublicInfo/plots/nuecontour2011.png

Details see Talk by Hiro Tanaka
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Global Fit Including T2K/MINOS Results
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FIG. 2: Breakdown of the evidence for θ13 > 0 from the global fit (ALL) into contributions coming from δm2-sensitive data
(Solar+KamLAND) and from ∆m2-sensitive data (ATM+LBL+CHOOZ). The left and right panels refer to old and new fluxes,
respectively.

Figure 2 breaks down the global evidence for sin2 θ13 > 0 into two separate contributions coming from the data
sets sensitive to either δm2 (Solar+KamLAND) or ∆m2 (ATM+LBL+CHOOZ), assuming old and new reactor fluxes
(left and right panels, respectively). Remarkably, the two data sets agree very well, with best fits rather close to each
other in both panels, and with nearly gaussian uncertainties in all cases. The bounds from combined (ALL) data
appear to be currently dominated by ∆m2-sensitive experiments—not surprisingly, since the T2K appearance results
alone account for more than 2σ [22]. The T2K experiment, currently limited by statistics rather than by systematics,
is expected to improve significantly the bounds on θ13 in future physics runs [22]. We also find it useful to summarize
the ±1σ ranges of sin2 θ13 in a different format in Fig. 3, where the solid and dashed error bars refer to old and new
reactor neutrino fluxes, respectively.

13! 2sin
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 > 013!Global evidence for 

SOLAR + KamLAND
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ALL

FIG. 3: Global 3ν analysis. Preferred ±1σ ranges for the mixing parameter sin2 θ13 from partial and global data sets. Solid
and dashed error bars refer to old and new reactor neutrino fluxes, respectively.

Fogli, Lisi, Marrone, Palazzo, Rotunno, arXiv:1106.6028
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(left and right panels, respectively). Remarkably, the two data sets agree very well, with best fits rather close to each
other in both panels, and with nearly gaussian uncertainties in all cases. The bounds from combined (ALL) data
appear to be currently dominated by ∆m2-sensitive experiments—not surprisingly, since the T2K appearance results
alone account for more than 2σ [22]. The T2K experiment, currently limited by statistics rather than by systematics,
is expected to improve significantly the bounds on θ13 in future physics runs [22]. We also find it useful to summarize
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Global Fit Including T2K/MINOS Results
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Fogli, Lisi, Marrone, Palazzo, 
Rotunno, arXiv:1106.6028

Consistent with 
SuperK Best Fit: 
δ = 220 degrees
(Neutrino 2010)
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Where Do We Stand?

• Latest 3 neutrino global analysis including atm, solar, reactor, LBL (T2K/MINOS) 
experiments:

•

12

Fogli, Lisi, Marrone, Palazzo, Rotunno, arXiv:1106.6028

P (νa → νb) =
���νb|ν, t

���2 � sin2 2θ sin2

�
∆m2

4E
L

�

1
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Generally: Different global fit analyses assume different error correlations among  
experiments ⇒ different results



Where Do We Stand?

• Search for absolute mass scale:

• end point kinematic of tritium beta decays

• WMAP + 2dFRGS + Lyα   ∑(mνi) < (0.36-1.5) eV
• very model dependent

• neutrinoless double beta decay
• uncertainty in nuclear matrix element

• Effective number of neutrinos:
• WMAP7 + BAO:  Neff = 4.34 +0.86-0.88

• BBN: Ns < 1.2  

13

21

Searches for Absolute Neutrino Mass Scale

! Cosmology:

       Very sensitive but model dependent

       WMAP+2dFRGS+Ly!:   "(m!
i

) < (0.7 - 1.2) eV

        degenerate neutrinos # < 0.4 eV

        future improvement: factor of 5-10?

! Neutrinoless double beta decay:

        Very sensitive but neutrinos have to be Majorana

        Reminder: Klepdor’s claim of signal at 0.4 eV

! Direct mass determination (no assumption needed):

      *  End point kinematic of tritium decays

      *  Current limit:

      *  New proposal to increase sensitivity to < 0.25 eV (KATRIN)

  

! 

m"
e

< 2.2  eV  (95% CL)     Mainz

m" µ
<170  keV     

m"#
<15.5  MeV  

! 

Tritium" He
3

+ e
#

+ $ e

  

! 

mee = "miUei
2

 <  (0.2#1.1)  eV  (Cuorcino 2005)

Tritium→ He
3 + e

− + νe

KATRIN: increase sensitivity ~ 0.2 eV

UMNS = U
†
e,LUν,L (1)

sin θ13 ∼
�

∆m2
sun

∆m2
atm

�1/2

∼ O(0.1) ⇒ LMA

θ12 + θc = 45
o

=
1

2
− 1

2
θc cos β

tan θ
2
⊙,exp = 0.47

+0.06
−0.05

seesaw ⇒ Mν ∼




0 0 ∗
0 1 1

∗ 1 1





M
T
d = Me ∼




∗ ∗ ∗
∗ ∗ 1

∗ ∗ 1





current bound: | < m > | < (0.19− 0.68) eV (CUORICINO, Feb 2008)

1

sin 2β = 0.672+0.069
−0.07

γ (deg) = 71+46
−45

α (deg) = 89+21
−13

τ(p → e+π0) > 8.2× 1033 years (90% CL, SuperK 2009) (1)

τ(p → νK+) > 2.3× 1033 years (90% CL, SuperK 2005) (2)

V †
e,RMeVe,L = diag(me,mµ,mτ )

V T
ν,LMνVν,L = diag(m1,m2,m3)

V †
u,RMuVu,L = diag(mu,mc,mt)

V †
d,RMνVd,L = diag(md,ms,mb)

current bound: | �m� | ≡
����
�

i=1,2,3

miU
2
ie

���� (3)

1
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Mangano, Serpico, arXiv:1103.1261

Gonzalez-Garcia et al, arXiv:1006.3795

Komatsu et al, arXiv:1001.4538 resolved by Planck 
soon!



            Neutrino Mass Spectrum

• two mass orderings compatible with data

14

What’s Next?
Reactor Exp: Double CHOOZ, Daya Bay, Reno

Long Baseline Exp: MINOS, NOvA, T2K, LBNE...

The known unknowns:

• How small is θ13? (νe component of ν3)

• θ23 > π/4,  θ23 < π/4 , θ23 = π/4 ? 

      (ν3 composition of ν)

• neutrino mass hierarchy (Δm132)?

• CP violation in neutrino oscillations? 

• Majorana vs Dirac? 
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Theoretical Challenges

(i) Absolute mass scale:  Why mν << mu,d,e? 
• seesaw mechanism: most appealing scenario ⇒ Majorana

• GUT scale (type-I, II) vs TeV scale (type-III, double seesaw)
• TeV scale new physics (extra dimension, extra U(1)) ⇒ Dirac or Majorana

(ii) Flavor Structure: Why neutrino mixing large while quark mixing small?
• seesaw doesn’t explain entire mass matrix w/ 2 large, 1 small mixing angles
• neutrino anarchy: no parametrically small number

• near degenerate spectrum, large mixing
• predictions strongly depend on choice of statistical measure

• family symmetry: there’s a structure, expansion parameter (symmetry effect)

• leptonic symmetry (normal or inverted) 

• quark-lepton connection ↔ GUT (normal)
• In most part of this talk: assume 3 generations, no LSND/MiniBoone/Reactor Anomaly

• MiniBoone anti-neutrino mode: excess in low energy region consistent with LSND

• 4th generation model: (3+3) consistent with experiments including MiniBoone Hou, Lee, arXiv:1004.2359

Hall, Murayama, Weiner (2000)

15Mu-Chun Chen, UC Irvine                                                     LISHEP2011                                                CBPF, Rio de Janeiro, 07/05/2011



Small Neutrino Mass: Seesaw Mechanism

• Mixture of light fields and heavy fields

• Diagonalize the mass matrix:

16

• Smallness of neutrino masses 
suggest a high mass scale

νR: sterile (singlet under ALL  
               gauge groups in SM)

νRνR mass term allowed 

Yanagida, 1979;  Gell-Mann, Ramond, Slansky, 1979; 
Mohapatra, Senjanovic, 1981

If
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Origin of Mass Hierarchy and Mixing

• In the SM: 22 physical quantities which seem unrelated

• Question arises whether these quantities can be related

• No fundamental reason can be found in the framework of SM

• less ambitious aim ⇒ reduce the # of parameters by imposing symmetries

• Grand Unified Gauge Symmetry

• GUT relates quarks and leptons

• quarks & leptons reside in the same GUT multiplets

• one set of Yukawa coupling for a given GUT multiplet ⇒ intra-family relations

• Family Symmetry 

• relate Yukawa couplings of different families

• inter-family relations

• further reduce the number of parameters

17

28

eV keV MeV GeV TeVmeV

tcu

bsd

µ !e

"1

"2

"3

"2
"1

"1

"3

"2

"3

normal hierarchy

inverted hierarchy

nearly degenerate

Mass spectrum of elementary particles

LMA-MSW solution
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Grand Unification

• Motivations:

• Electromagnetic, weak, and 
strong forces have very different 
strengths

• But their strengths become the 
same at 1016 GeV if there is 
supersymmetry

•  To obtain

18

EM

weak

strong
mν ~ (Δm2atm)1/2, mD ~ mtop

MR ~ 1015 GeV

coupling constants run!

MGUT
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Grand Unification

• Candidate GUT groups:

• SU(5):

• SO(10):

19

• unify15 known fermions in each 
generation into a 16-dim spinor 
representation ⇒ νR is predicted

16 = 10 + 5 + 1

• unify15 known fermions in each 
generation into a 10 + 5-dim 
representations

• can add by hand an extra singlet as νR  

10 = (3,2,1/6)    ~    u u u         
                               d d d

     + (3✳,1,-2/3) ~   ( uc, uc, uc )

     + (1,1, 1)       ~   ec   

5  =  (3✳,1,1/3) ~   ( dc, dc, dc )

     +  (1,2,-1/2) ~     ν
                                e

[ ]

][

charge quantization 
explained!

Mu-Chun Chen, UC Irvine                                                     LISHEP2011                                                CBPF, Rio de Janeiro, 07/05/2011



Origin of Mass Hierarchy and Mixing

• Several models have been constructed based on 

• GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry GF   

• Family Symmetries GF based on continuous groups:

• U(1) 

• SU(2) 

• SU(3) 

• Recently, models based on discrete family symmetry groups have been constructed 

• A4 (tetrahedron)

• T´ (double tetrahedron) 

• S3 (equilateral triangle)

• S4 (octahedron, cube)

• A5 (icosahedron, dodecahedron)

• ∆27 

• Q4 

20

33

The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F

uuu

ddd

eee

sss

ttt

bbb

!!!µµµ

"""µµµ

!!!"""

ccc

!!!eee

SU(2)F

SU(10)GUT Symmetry
SU(5), SO(10), ...

family symmetry 
(T′, SU(2), ...)

  Motivation:  Tri-bimaximal 
(TBM) neutrino mixing
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What does the data tell us?

• Neutrino Oscillation Parameters

• Latest Global Fit (3σ)

• Tri-bimaximal Mixing Pattern Harrison, Perkins, Scott (1999)

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2
θ12 = 0.30 (0.25− 0.34), sin2

θ23 = 0.5 (0.38− 0.64), sin2
θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =





�
2/3 1/

√
3 0

−
�

1/6 1/
√

3 −1/
√

2

−
�

1/6 1/
√

3 1/
√

2




, (2)

which predicts sin2
θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2

θ⊙,TBM = 1/3

for the solar mixing angle. Even though the predicted θ⊙,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1�, 1�� and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)
T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)
T has three in-equivalent

doublets, 2, 2�, and 2��, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)
T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)
T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)
T to
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I. INTRODUCTION

The measurement of various neutrino oscillation parameters has entered a precision era. At

present the global fit to a suite of oscillation experiments indicate the following best fit values and

3σ limits [1],

sin
2 θatm = 0.42 (0.34− 0.64) , sin2 θ⊙ = 0.306 (0.259− 0.359) ,

sin
2 θ13 = 0.021 (0.001− 0.044) ,

∆m2
atm = 2.35 (2.06− 2.67)× 10

−3
eV

2 , ∆m2
⊙ = 7.58 (6.99− 8.18)× 10

−5
eV

2 . (1)

The experimental values for the neutrino mixing angles are very close to the prediction of the

tri-bimaximal mixing (TBM) matrix [2],

UTBM =


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�
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
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, (2)

which predicts

sin
2 θTBM

atm = 1/2 , tan
2 θTBM

⊙ = 1/2 , sin θTBM
13 = 0 . (3)

The Super Kamiokande (SuperK) Collaboration recently presented [3] at Neutrino 2010 for the

very first time the best fit value for the leptonic Dirac CP phase,

δSK
� = 220

o . (4)

The recent result [4] from T2K Collaboration has given an indication of non-zero θ13. If the T2K

result holds up, it is likely that the value of θ13 will be measured within the next decade by the

reactor experiments. In addition, the Long Baseline Neutrino Experiment (LBNE), if approved,

will be able to determine the leptonic Dirac CP violating phase, δ�.

It has been realized that the TBM matrix can arise from an underlying A4 symmetry [5].

Nevertheless, A4 does not give rise to quark mixing [6], making it incompatible with grand unified

theory (GUT). On the other hand, the group T � [7, 8], which is the double covering of A4, can

successfully account for the quark sector as demonstrated in a SU(5) model constructed by us [7]. (It

is interesting to note that the particle content of Ref. [7] is free of discrete gauge anomaly [11, 12].)

One special property of the group T � is that its group theoretical Clebsch-Gordon (CG) coefficients

are intrinsically complex [9]. Based on this observation, we pointed out for the first time in Ref. [10]
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Models for Tri-bimaximal Mixing

• Neutrino mass matrix

• If  A + B = C + D  ⇒  

• mass matrix M diagonalized by UTBM  

M =




A B B
B C D
B D C





1
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Tribimaximal Mixing, Leptogenesis, and θ13

Elizabeth E. Jenkins and Aneesh V. Manohar
(Dated: August 12, 2008)

We show that seesaw models based on flavor symmetries (such as A4 and Z7 ! Z3) which produce
exact tribimaximal neutrino mixing also imply a vanishing leptogenesis asymmetry. We show
that higher order symmetry breaking corrections in these models can give a non-zero leptogenesis
asymmetry and generically also give deviations from tribimaximal mixing and a non-zero θ13 ! 10−2.

Experiments using solar, atmospheric and reactor neu-
trinos, and neutrino beams produced at accelerators have
confirmed the existence of neutrino oscillations. The re-
sults are consistent with neutrino mixing produced if the
neutrino weak eigenstates νe, νµ and ντ are related to the
mass eigenstates ν1, ν2 and ν3 by a 3× 3 unitary matrix
U , commonly called the PMNS matrix,

|να〉 = Uαi |νi〉 (1)

where α ∈ {e, µ, τ} and i ∈ {1, 2, 3}. The matrix U is
written in terms of three angles θ12, θ13, and θ23, and
three CP -violating phases δ, α1 and α2 [1],

U =




1 0 0
0 c23 s23

0 −s23 c23



 ×




c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13





×




c12 s12 0
−s12 c12 0

0 0 1



 ×




eiα1/2 0 0

0 eiα2/2 0
0 0 1



 (2)

with cij ≡ cos θij , sij ≡ sin θij , and 0 ≤ θij ≤ π/2,
0 ≤ δ, α1,2 < 2π. The Majorana phases α1,2 enter in lep-
ton number violating amplitudes, and so are not observ-
able presently in neutrino oscillation experiments, which
measure lepton number conserving processes. The cur-
rent experimental values of measured neutrino oscillation
observables (taken from Ref. [2]) are:

∆m2
21 = (8.0 ± 0.3) × 10−5 eV2

∣∣∆m2
32

∣∣ = (2.5 ± 0.2) × 10−3 eV2

tan2 θ12 = 0.45 ± 0.05 (30◦ < θ12 < 38◦)

sin2 2θ23 = 1.02 ± 0.04 (36◦ < θ23 < 54◦)

sin2 2θ13 = 0.0 ± 0.05 (θ13 < 10◦) . (3)

There is an ongoing experimental program to measure or
place an upper bound on θ13 at the level of sin2 2θ13 ∼
0.01 [3].

The ratio of the solar and atmospheric mass squared
differences is r = ∆m2

21/
∣∣∆m2

32

∣∣ = (3.2±0.3)×10−2. Al-
though the individual neutrino masses mi are not deter-
mined, the neutrino masses are known to be much smaller
than the masses of all other standard model fermions
from tritium endpoint, neutrinoless double beta decay
and cosmological data. The smallness of neutrino masses
can be naturally explained using the seesaw model [4],
which extends the standard model by adding gauge sin-
glet neutrinos. The singlet neutrinos NR of the seesaw

model naturally have Majorana masses much larger than
the electroweak scale, unlike the standard model fermions
which acquire mass proportional to electroweak symme-
try breaking. An interesting feature of the seesaw model
is that CP -violating decays of heavy singlet neutrinos can
produce a lepton asymmetry in the early universe, which
is converted into a baryon asymmetry at the electroweak
scale. This leptogenesis mechanism [5, 6] provides a sim-
ple explanation for the observed baryon asymmetry of
the universe.

The neutrino mixing matrix has two large angles (θ12,
θ23), and one small angle (θ13). A particularly inter-
esting ansatz for the mixing matrix is the tribimaximal
matrix [7]

UTB =





√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2



 (4)

with tan2 θ12 = 1/2, sin 2θ23 = 1 and θ13 = 0. The phase
δ is undefined since θ13 = 0. Eq. 4 can be easily extended
to include non-vanishing Majorana phases α1,2, UTB →
UTB diag(eiα1/2, eiα2/2, 1), which is the generalized form
of tribimaximal mixing that we will consider in this work.
The tribmaximal mixing matrix has been derived using
models with discrete flavor symmetries. The models rely
on the observation due to Ma [8] that a Majorana mass
matrix of the form




A B B
B C D
B D C



 (5)

is diagonalized by a mixing matrix with θ13 = 0 and
sin2 2θ23 = 1. If A+B = C +D, then tan2 θ12 = 1/2 and
the mixing matrix is tribimaximal. The mixing matrix
can have Majorana phases α1,2 if A, B, C, D are complex.
Particularly interesting are models based on the symme-
tries A4 [8, 9] and Z7 ! Z3 [10]. These groups have a
three-dimensional irreducible representation, and three
inequivalent one-dimensional representations, so that the
three generations of lepton doublets, charged leptons and
singlet neutrinos can either transform as a 3, or as three
inequivalent one-dimensional representations, which dis-
tinguish between the generations.

It turns out that the seesaw models in the literature
which derive exact tribimaximal mixing from a flavor
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We show that seesaw models based on flavor symmetries (such as A4 and Z7 ! Z3) which produce
exact tribimaximal neutrino mixing also imply a vanishing leptogenesis asymmetry. We show
that higher order symmetry breaking corrections in these models can give a non-zero leptogenesis
asymmetry and generically also give deviations from tribimaximal mixing and a non-zero θ13 ! 10−2.
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is that CP -violating decays of heavy singlet neutrinos can
produce a lepton asymmetry in the early universe, which
is converted into a baryon asymmetry at the electroweak
scale. This leptogenesis mechanism [5, 6] provides a sim-
ple explanation for the observed baryon asymmetry of
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sin2 2θ23 = 1. If A+B = C +D, then tan2 θ12 = 1/2 and
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We show that seesaw models based on flavor symmetries (such as A4 and Z7 ! Z3) which produce
exact tribimaximal neutrino mixing also imply a vanishing leptogenesis asymmetry. We show
that higher order symmetry breaking corrections in these models can give a non-zero leptogenesis
asymmetry and generically also give deviations from tribimaximal mixing and a non-zero θ13 ! 10−2.
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The tribmaximal mixing matrix has been derived using
models with discrete flavor symmetries. The models rely
on the observation due to Ma [8] that a Majorana mass
matrix of the form




A B B
B C D
B D C



 (5)

is diagonalized by a mixing matrix with θ13 = 0 and
sin2 2θ23 = 1. If A+B = C +D, then tan2 θ12 = 1/2 and
the mixing matrix is tribimaximal. The mixing matrix
can have Majorana phases α1,2 if A, B, C, D are complex.
Particularly interesting are models based on the symme-
tries A4 [8, 9] and Z7 ! Z3 [10]. These groups have a
three-dimensional irreducible representation, and three
inequivalent one-dimensional representations, so that the
three generations of lepton doublets, charged leptons and
singlet neutrinos can either transform as a 3, or as three
inequivalent one-dimensional representations, which dis-
tinguish between the generations.

It turns out that the seesaw models in the literature
which derive exact tribimaximal mixing from a flavor

TBM pattern

solar mixing angle NOT fixed

L = LSM +
O5D

M
+
O6D

M2
+ ... (1)

∂J = 0 (2)

�

fermions

Q3
f = 0 (3)

UMNS = V †
e,LVν,L (4)

UT
TBM M UTBM = diag(m1,m2,m3) (5)

1

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =





�
2/3 1/

√
3 0

−
�

1/6 1/
√

3 −1/
√

2

−
�

1/6 1/
√

3 1/
√

2




, (2)

which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ⊙,TBM = 1/3

for the solar mixing angle. Even though the predicted θ⊙,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1�, 1�� and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2�, and 2��, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2

μ-τ symmetry: Petcov; Fukuyama, Nishiura; 
Mohapatra, Nussinov; Ma, Raidal; ... 
 
S3: Kubo, Mondragon, Mondragon, Rodriguez-
Jauregui; Araki, Kubo, Paschos; Mohapatra, Nasri, Yu; ...

D4: Grimus, Lavoura; ...

A4: Ma, Rajasekaran; Altarelli, Feruglio; ...

Z3 x Z7: Luhn, Nasri, Ramond; ...
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Double Tetrahedral T´ Symmetry

• Smallest Symmetry to realize TBM ⇒ Tetrahedral group A4

• even permutations of 4 objects

    S: (1234) → (4321),   T: (1234) → (2314)

• invariance group of tetrahedron 

• can arise from extra dimensions: 6D → 4D

• does NOT give quark mixing

• Double Tetrahedral Group T´

• inequivalent representations

• complex CG coefficients when spinorial representations are involved

The vertices of a cube can be grouped into

two groups of four, each forming a regular

tetrahedron (see above, and also animation,

showing one of the two tetrahedra in the

cube). The symmetries of a regular

tetrahedron correspond to half of those of a

cube: those which map the tetrahedrons to

themselves, and not to each other.

The tetrahedron is the only Platonic solid

that is not mapped to itself by point

inversion.

The regular tetrahedron has 24 isometries,

forming the symmetry group Td,

isomorphic to S4. They can be categorized

as follows:

T, isomorphic to alternating group A4 (the identity and 11 proper rotations) with the following conjugacy

classes (in parentheses are given the permutations of the vertices, or correspondingly, the faces, and the
unit quaternion representation):

identity (identity; 1)
rotation about an axis through a vertex, perpendicular to the opposite plane, by an angle of ±120°:
4 axes, 2 per axis, together 8 ((1 2 3), etc.; (1±i±j±k)/2)
rotation by an angle of 180° such that an edge maps to the opposite edge: 3 ((1 2)(3 4), etc.; i,j,k)

reflections in a plane perpendicular to an edge: 6
reflections in a plane combined with 90° rotation about an axis perpendicular to the plane: 3 axes, 2 per
axis, together 6; equivalently, they are 90° rotations combined with inversion (x is mapped to !x): the
rotations correspond to those of the cube about face-to-face axes

The isometries of irregular tetrahedra

The isometries of an irregular tetrahedron depend on the geometry of the tetrahedron, with 7 cases possible. In

each case a 3-dimensional point group is formed.

An equilateral triangle base and isosceles (and non-equilateral) triangle sides gives 6 isometries,
corresponding to the 6 isometries of the base. As permutations of the vertices, these 6 isometries are the
identity 1, (123), (132), (12), (13) and (23), forming the symmetry group C3v, isomorphic to S3.

Four congruent isosceles (non-equilateral) triangles gives 8 isometries. If edges (1,2) and (3,4) are of
different length to the other 4 then the 8 isometries are the identity 1, reflections (12) and (34), and 180°
rotations (12)(34), (13)(24), (14)(23) and improper 90° rotations (1234) and (1432) forming the
symmetry group D2d.

Four congruent scalene triangles gives 4 isometries. The isometries are 1 and the 180° rotations (12)(34),

(13)(24), (14)(23). This is the Klein four-group V4 ! Z2
2, present as the point group D2.

Two pairs of isomorphic isosceles (non-equilateral) triangles. This gives two opposite edges (1,2) and
(3,4) that are perpendicular but different lengths, and then the 4 isometries are 1, reflections (12) and
(34) and the 180° rotation (12)(34). The symmetry group is C2v, isomorphic to V4.

Two pairs of isomorphic scalene triangles. This has two pairs of equal edges (1,3), (2,4) and (1,4), (2,3)
but otherwise no edges equal. The only two isometries are 1 and the rotation (12)(34), giving the group

The proper rotations and reflections in the symmetry group of the

regular tetrahedron

Relation to Orbifold Compactification

• compactify 6D to 4D (A4 isometry of T2/Z2)

• fixed points:

(under investigation)

2 A4 as the isometry of T 2/Z2

We consider a quantum field theory in 6 dimensions, with two extra dimensions compact-

ified on an orbifold T 2/Z2. We denote by z = x5 + ix6 the complex coordinate describing
the extra space. The torus T 2 is defined by identifying in the complex plane the points
related by

z → z + 1

z → z + γ γ = e
i
π

3 ,
(1)

where our length unit, 2πR, has been set to 1 for the time being. The parity Z2 is defined

by
z → −z (2)

and the orbifold T 2/Z2 can be represented by the fundamental region given by the trian-

gle with vertices 0, 1, γ, see Fig. 1. The orbifold has four fixed points, (z1, z2, z3, z4) =
(1/2, (1 + γ)/2, γ/2, 0). The fixed point z4 is also represented by the vertices 1 and γ.

In the orbifold, the segments labelled by a in Fig. 1, (0, 1/2) and (1, 1/2), are identified
and similarly for those labelled by b, (1, (1 + γ)/2) and (γ, (1 + γ)/2), and those labelled
by c, (0, γ/2), (γ, γ/2). Therefore the orbifold is a regular tetrahedron with vertices at

the four fixed points. The symmetry of the uncompactified 6D space time is broken by

Figure 1: Orbifold T2/Z2. The regions with the same numbers are identified with each
other. The four triangles bounded by solid lines form the fundamental region, where also
the edges with the same letters are identified. The orbifold T2/Z2 is exactly a regular

tetrahedron with 6 edges a, b, c, d, e, f and four vertices z1, z2, z3, z4, corresponding to the
four fixed points of the orbifold.

compactification. Here we assume that, before compactification, the space-time symmetry

2

T2 torus: 

Z2 parity: 

z → z + 1, z → z + eiπ/3

z → −z

1

z → z + 1, z → z + γ, γ = eiπ/3

z → −z

1

z = x5 + ix6

z → z + 1, z → z + γ, γ = eiπ/3

z → −z

1

complex coordinate:  

z = x5 + ix6

z → z + 1, z → z + γ, γ = eiπ/3

z → −z

(z1, z2, z3, z4) = (1/2, (1 + γ)/2, γ/2, 0)

1

For A4:  Altarelli et al, 2006

34

A4:  1,  1′,  1″, 3
other:   2,  2′,  2″

TBM for neutrinos

2 +1 assignments for charged fermions

(vectorial)
(spinorial)

Ma, Rajasekaran (2004)

Altarelli, Feruglio (2006)

Frampton, Kephart (1995); 
M.-C.C., K.T. Mahanthappa
PLB652, 34 (2007); 681, 444 (2009)
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CP Violation

• CP violation ⇔ complex mass matrices

• Conventionally, CPV arises in two ways:

•  Explicit CP violation: complex Yukawa coupling constants Y

• Spontaneous CP violation: complex scalar VEVs  <h>

3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(#x, t) = αO(#x, t) + α∗
O

†(#x, t) , (19)

where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(#x, t)
CP−→ O

†(−#x, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(#x, t)
T−→ O(#x,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=







ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1






, (25)

Md, MT
e

ybvdφ0ζ0
=







0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1






, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7

c : 1, mu : mc : mt & θ8

c : θ3.2

c : 1,
with θc &

√

md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,







0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999






. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,
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TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(#x, t) = αO(#x, t) + α∗
O

†(#x, t) , (19)

where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(#x, t)
CP−→ O

†(−#x, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(#x, t)
T−→ O(#x,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=







ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1






, (25)

Md, MT
e

ybvdφ0ζ0
=







0 (1 + i)b 0
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With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7

c : 1, mu : mc : mt & θ8

c : θ3.2

c : 1,
with θc &

√

md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,







0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o
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0.999
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


. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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 A Novel Origin of CP Violation

• Complex CG coefficients in T´ ⇒ explicit CP violation 

• real Yukawa couplings, real scalar VEVs
• CPV in quark and lepton sectors purely from complex CG coefficients
• no additional parameters needed ⇒ extremely predictive model!

• scalar potential: Z3 symmetry ⇒〈∆1〉= 〈∆2〉=〈∆3〉≡〈∆〉 real

• complex effective mass matrix 

M.-C.C., K.T. Mahanthappa
Phys. Lett. B681, 444 (2009)

a toy model

(   L1          L2    ) ( R
1   R

2 )

CGs of  T´
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The Model

• Symmetry: SUSY SU(5) x T´ x Z12 x Z12

• Superpotential:  only 10 operators allowed

26

Group Theoretical Origin of CP Violation

K.T. Mahanthappa

July 14, 2010

Experimentally, the best fit values for the neutrino mixing angles are very

close to the prediction of the tri-bimaximal mixing (TBM) matrix [4],

UTBM =





�
2/3

�
1/3 0

−
�
1/6

�
1/3 −

�
1/2

−
�
1/6

�
1/3

�
1/2



 (1)

which predicts sin
2 θatm = 1/2, tan

2 θ⊙ = 1/2 and sin θ13 = 0. It has been

realized that the TBM matrix can arise from an underlying A4 symmetry [5].

Nevertheless, A4 does not give rise to quark mixing [6]. Even though the exact

TBM matrix does not give rise to CP violation, due to the correction from the

charged lepton sector in our model, leptonic CP violation can still arise.

The Lagrangian of the Yukawa sector of the model is given by,

WYuk = WTT +WTF +Wν , (2)

where

WTT = ytH5T3T3 +
1

Λ2
H5

�
ytsT3Taψζ + ycTaTbφ

2

�
+

1

Λ3
yuH5TaTbφ

�3
,(3)

WTF =
1

Λ2
ybH

�
5FT3φζ +

1

Λ3

�
ys∆45FTaφψN + ydH5

�FTaφ
2ψ�

�
, (4)

Wν =
1

Λ3

�
λ1H5FNζζ �

�
ξ + η

��
+NNS , (5)

which is invariant under SU(5) × T
�
and it is CP non-invariant. Here the

parameter Λ is the cutoff scale of the T
�
symmetry while MX is the scale where

lepton number violating operators are generated. Note that all Yukawa coupling

constants, yx, in the Lagrangian are real parameters. Even if they are made

complex, their phases can be absorbed by redefinition of the Higgs and flavon

fields. The T
�
flavon fields acquire vacuum expectation values along the following

2

Group Theoretical Origin of CP Violation

K.T. Mahanthappa

July 16, 2010

1 Introduction

Experimentally, the best fit values for the neutrino mixing angles are very close
to the prediction of the tri-bimaximal mixing (TBM) matrix [?],

UTBM =





�
2/3

�
1/3 0

−
�
1/6

�
1/3 −

�
1/2

−
�
1/6

�
1/3

�
1/2



 (1)

which predicts sin2 θatm = 1/2, tan2 θ⊙ = 1/2 and sin θ13 = 0. It has been
realized that the TBM matrix can arise from an underlying A4 symmetry [?].
Nevertheless, A4 does not give rise to quark mixing [?]. Even though the exact
TBM matrix does not give rise to CP violation, due to the correction from the
charged lepton sector in our model, leptonic CP violation can still arise.

The Lagrangian of the Yukawa sector of the model is given by,

WYuk = WTT +WTF +Wν , (2)

where

WTT = ytH5T3T3 +
1

Λ2
H5

�
ytsT3Taψζ + ycTaTbφ

2

�
+

1

Λ3
yuH5TaTbφ

�3 (3)

WTF =
1

Λ2
ybH

�
5FT3φζ +

1

Λ3

�
ys∆45FTaφψζ

� + ydH5
�FTaφ

2ψ�
�

(4)

Wν = λ1NNS +
1

Λ3

�
H5FNζζ �

�
λ2ξ + λ3η

��
(5)

Λ : scale above which T
� is exact

MRR =




1 0 0
0 0 1
0 1 0



 s0Λ

MD =




2ξ0 + η0 −ξ0 −ξ0
−ξ0 2ξ0 −ξ0 + η0
−ξ0 −ξ0 + η0 2ξ0



 ζ0ζ
�
0v
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Experimentally, the best fit values for the neutrino mixing angles are very

close to the prediction of the tri-bimaximal mixing (TBM) matrix [4],

UTBM =





�
2/3

�
1/3 0

−
�
1/6

�
1/3 −

�
1/2

−
�
1/6

�
1/3

�
1/2



 (1)

which predicts sin
2 θatm = 1/2, tan

2 θ⊙ = 1/2 and sin θ13 = 0. It has been

realized that the TBM matrix can arise from an underlying A4 symmetry [5].

Nevertheless, A4 does not give rise to quark mixing [6]. Even though the exact

TBM matrix does not give rise to CP violation, due to the correction from the

charged lepton sector in our model, leptonic CP violation can still arise.

The Lagrangian of the Yukawa sector of the model is given by,

WYuk = WTT +WTF +Wν , (2)

where

WTT = ytH5T3T3 +
1

Λ2
H5

�
ytsT3Taψζ + ycTaTbφ

2

�
+

1

Λ3
yuH5TaTbφ

�3
(3)

WTF =
1

Λ2
ybH

�
5FT3φζ +

1

Λ3

�
ys∆45FTaφψN + ydH5

�FTaφ
2ψ�

�
(4)

Wν = λ1NNS +
1

Λ3

�
H5FNζζ �

�
λ2ξ + λ3η

��
(5)

Λ : scale above which T
�
is exact

which is invariant under SU(5) × T
�
and it is CP non-invariant. Here the

parameter Λ is the cutoff scale of the T
�
symmetry while MX is the scale where

lepton number violating operators are generated. Note that all Yukawa coupling

constants, yx, in the Lagrangian are real parameters. Even if they are made

complex, their phases can be absorbed by redefinition of the Higgs and flavon

fields. The T
�
flavon fields acquire vacuum expectation values along the following

2

Reality of Yukawa couplings: ensured by degrees of freedom in field redefinition

up type quarks

down type quarks
& charged leptons

neutrino masses

T3 Ta F H5 ∆45 φ φ
�

ψ ψ
�

ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)

T 1 2 3 1 1� 3 3 2� 2 1�� 1� 3 1

Z12 ω
5

ω
2

ω
5

ω
2

ω
5

ω
3

ω
2

ω
6

ω
9

ω
9

ω
3

ω
10

ω
10

Z
�
12 ω ω

4
ω

8
ω

10
ω

3
ω

3
ω

6
ω

7
ω

8
ω

2
ω

11 1 1

TABLE I: Charge assignments. Here the parameter ω = e
iπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)
T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z
�
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, u
c
, e

c)L and a 5(dc
, �)L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)
T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)
T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

SU(5) T′

:   (T1,T2) ∼ 2,   T3 ∼1

T3 Ta F H5 ∆45 φ φ
�

ψ ψ
�

ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)

T 1 2 3 1 1� 3 3 2� 2 1�� 1� 3 1

Z12 ω
5

ω
2

ω
5

ω
2

ω
5

ω
3

ω
2

ω
6

ω
9

ω
9

ω
3

ω
10

ω
10

Z
�
12 ω ω

4
ω

8
ω

10
ω

3
ω

3
ω

6
ω

7
ω

8
ω

2
ω

11 1 1

TABLE I: Charge assignments. Here the parameter ω = e
iπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)
T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z
�
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, u
c
, e

c)L and a 5(dc
, �)L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)
T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)
T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

:   (F1, F2, F3) ∼ 3

(7+2) parameters fit 22 masses, 
mixing angles, CPV measures

M.-C.C, K.T. Mahanthappa
Phys. Lett. B652, 34 (2007);  Phys. Lett. B681, 444 (2009)

spinorial 
representations 
⇒ complex CGs 

⇒ CPV in quark 

& charged lepton 
sector

1: (N1,N2,N3) ~ 3
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Model Predictions

• Resulting neutrino mass matrices

• seesaw mechanism: effective neutrino mass matrix

• mass sum rule among 3 masses

Group Theoretical Origin of CP Violation

K.T. Mahanthappa

July 14, 2010

Experimentally, the best fit values for the neutrino mixing angles are very
close to the prediction of the tri-bimaximal mixing (TBM) matrix [4],

UTBM =





�
2/3

�
1/3 0

−
�
1/6

�
1/3 −

�
1/2

−
�
1/6

�
1/3

�
1/2



 (1)

which predicts sin2 θatm = 1/2, tan2 θ⊙ = 1/2 and sin θ13 = 0. It has been
realized that the TBM matrix can arise from an underlying A4 symmetry [5].
Nevertheless, A4 does not give rise to quark mixing [6]. Even though the exact
TBM matrix does not give rise to CP violation, due to the correction from the
charged lepton sector in our model, leptonic CP violation can still arise.

The Lagrangian of the Yukawa sector of the model is given by,

WYuk = WTT +WTF +Wν , (2)

where

WTT = ytH5T3T3 +
1

Λ2
H5

�
ytsT3Taψζ + ycTaTbφ

2

�
+

1

Λ3
yuH5TaTbφ

�3 (3)

WTF =
1

Λ2
ybH

�
5FT3φζ +

1

Λ3

�
ys∆45FTaφψN + ydH5

�FTaφ
2ψ�

�
(4)

Wν = λ1NNS +
1

Λ3

�
H5FNζζ �

�
λ2ξ + λ3η

��
(5)

Λ : scale above which T
� is exact

MRR =




1 0 0
0 0 1
0 1 0



 s0Λ

�S� = s0Λ

�η� = η0Λ

2

only vector representations
⇒ all CG are real

⇒ Majorana phases: 0 or π 

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =





�
2/3 1/

√
3 0

−
�

1/6 1/
√

3 −1/
√

2

−
�

1/6 1/
√

3 1/
√

2




, (2)

which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ⊙,TBM = 1/3

for the solar mixing angle. Even though the predicted θ⊙,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1�, 1�� and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2�, and 2��, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2

Form diagonalizable: 
-- no adjustable parameters
-- neutrino mixing from CG coefficients!

27

T3 Ta F N H5 H
�
5

∆45 φ φ� ψ ψ� ζ ζ � ξ η S

SU(5) 10 10 5 1 5 5 45 1 1 1 1 1 1 1 1 1

T
�

1 2 3 3 1 1 1
�

3 3 2
�

2 1
��

1
�

3 1 1

Z12 ω5 ω2 ω5 ω7 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10 ω10

Z
�
12 ω ω4 ω8 ω5 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11

1 1 ω2

Table 1: Field content of our model. The three generations of matter fields in

10 and 5 of SU(5) are in the T3, Ta (a = 1, 2) and F multiplets. The Higges

that are needed to generate SU(5) invariant Yukawa interactions are H5, H
�
5

and ∆45. The flavon fields φ through N are those that give rise to the charged

fermion mass matrices, while ξ and η are the ones that generate neutrino masses.

The Z12 charges are given in terms of the parameter ω = e
iπ/6

.

�S� = s0Λ

�η� = η0Λ

U
T
TBMMνUTBM = diag((3ξ0 + η0)

2
, η20 ,−(−3ξ0 + η0)

2
)
(ζ0ζ �0vu)

2

s0Λ

which is invariant under SU(5) × T
�
and it is CP non-invariant. Here the

parameter Λ is the cutoff scale of the T
�
symmetry while MX is the scale where

lepton number violating operators are generated. Note that all Yukawa coupling

constants, yx, in the Lagrangian are real parameters. Even if they are made

complex, their phases can be absorbed by redefinition of the Higgs and flavon

fields. The T
�
flavon fields acquire vacuum expectation values along the following

direction,

�ξ� =




1

1

1



 ξ0Λ , �φ�� =




1

1

1



φ�
0Λ , (6)

�φ� =




0

0

1



φ0Λ , �ψ� =
�

1

0

�
ψ0Λ , (7)

�ψ�� =
�

1

1

�
ψ�
0Λ , (8)

�ζ� = ζ0Λ , �N� = N0Λ , �η� = u0Λ . (9)

Note that all the expectation values are real and they don’t contribute to CP

violation. (An interesting possibility of having spontaneous CP violation even

though the VEVs of scalars are real has been discussed [13].)
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1 Introduction

Experimentally, the best fit values for the neutrino mixing angles are very close
to the prediction of the tri-bimaximal mixing (TBM) matrix [4],

UTBM =





�
2/3

�
1/3 0

−
�
1/6

�
1/3 −

�
1/2

−
�
1/6

�
1/3

�
1/2



 (1)

which predicts sin2 θatm = 1/2, tan2 θ⊙ = 1/2 and sin θ13 = 0. It has been
realized that the TBM matrix can arise from an underlying A4 symmetry [5].
Nevertheless, A4 does not give rise to quark mixing [6]. Even though the exact
TBM matrix does not give rise to CP violation, due to the correction from the
charged lepton sector in our model, leptonic CP violation can still arise.

The Lagrangian of the Yukawa sector of the model is given by,

WYuk = WTT +WTF +Wν , (2)

where

WTT = ytH5T3T3 +
1

Λ2
H5

�
ytsT3Taψζ + ycTaTbφ

2

�
+

1

Λ3
yuH5TaTbφ

�3 (3)

WTF =
1

Λ2
ybH

�
5FT3φζ +

1

Λ3

�
ys∆45FTaφψζ

� + ydH5
�FTaφ

2ψ�
�

(4)

Wν = λ1NNS +
1

Λ3

�
H5FNζζ �

�
λ2ξ + λ3η

��
(5)

Λ : scale above which T
� is exact

MRR =




1 0 0
0 0 1
0 1 0



 s0Λ

MD =




2ξ0 + η0 −ξ0 −ξ0
−ξ0 2ξ0 −ξ0 + η0
−ξ0 −ξ0 + η0 2ξ0



 ζ0ζ
�
0vu

2

�ζ �� = ζ �0

tan2 θ⊙,exp = 0.468

h = Uν,RMD

S0 = 1012 GeV

�S� = S0

2

�ζ �� = ζ �0

tan2 θ⊙,exp = 0.468

h = Uν,RMD

S0 = 1012 GeV

�S� = S0

2
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normal hierarchy predicted

General conditions for form diagonalizability:
M.-C.C., S.F. King, JHEP0906, 072  (2009)
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Model Predictions

• Charged Fermion Sector (7 parameters)

• Neutrino Sector (2 parameters)

Vcb Vub

Georgi-Jarlskog relations ⇒ Vd,L ≠ I

SU(5) ⇒ Md = (Me)T 

⇒ corrections to TBM related to θc

angle, the corresponding mixing angle in the charged lepton sector, θ
e
12, is much suppressed due to

the GJ relations,

θ
e
12 �

�
me

mµ
� 1

3

�
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2
θ⊙ � tan2

θ⊙,TBM − e
iβ

θc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ
�
0.

With θc � 0.22 and (φ0ψ
�
0) being real, the factor e

iβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2
θ⊙,TBM = 1/2, and the experimental best fit value, tan2

θ⊙,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 � θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ⊙ will pin down the

phase of φ0ψ
�
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = �
2
u : �u : 1, md : ms : mb = �

2
d : �d : 1 , (20)

where �u � (1/200) = 0.005 and �d � (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ
�
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)

8

UMNS = V †
e,LUTBM =




1 −θc/3 ∗

θc/3 1 ∗
∗ ∗ 1









�
2/3 1/

√
3 0

−
�

1/6 1/
√

3 −1/
√

2
−

�
1/6 1/

√
3 1/

√
2





(1)

1

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 � 0 .
(49)




0.838 0.542 0.0583e−i227o

−0.385− 0.0345ei227o
0.594− 0.0224ei227o

0.705
0.384− 0.0346ei227o −0.592− 0.0224ei227o

0.707



 (50)

→ |UMNS | =




0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707



 (51)

J� = −0.00967 (52)

Charged lepton diagonalization matrix:



0.997ei177o

0.0823ei131o
1.31× 10−5e−i45o

0.0823ei41.8o
0.997ei176o

0.000149e−i3.58o

1.14× 10−6 0.000149 1



 (53)

sin2 2θatm = 1, tan2 θ⊙ = 0.419, |Ue3| = 0.0583 (54)

tan2 θ⊙ � tan2 θ⊙,TBM +
1
2
θc cos δ (55)

4

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2
θ
2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2
θ12 = 0.3. The GJ relation for the first family, md � 3me, is obtained due to the

operator H5FTaφ
2
ψ
�, which further breaks the (d)

T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ
�
0 0

−(1− i)φ0ψ
�
0 ψ0N0 0

φ0ψ
�
0 φ0ψ

�
0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ
�
0 φ0ψ

�
0

(1 + i)φ0ψ
�
0 −3ψ0N0 φ0ψ

�
0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ
�
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ
�
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)

T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
�
ψ

�
breaks (d)

T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ
2. The breaking of (d)

T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ
�3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ
�3
0

1−i
2 φ

�3
0 0

1−i
2 φ

�3
0 φ

�3
0 + (1− i

2)φ2
0 y

�
ψ0ζ0

0 y
�
ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ
�
0, and y

� = yts/
√

ycyt.

The mixing angel θ
u
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θ
u
12 �

�
mu/mc, while the mixing angle θ

d
12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θ
d
12 �

�
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc �
���md/ms − e

iα
�

mu/mc

�� ∼
�

md/ms, where the

relative phase α depends upon the coupling constants. Even though θ
d
12 is of the size of the Cabibbo

7

neutrino mixing
angle 1/2 quark mixing

angle

complex CGs: leptonic Dirac CPV 
(the only non-zero leptonic CPV phase)

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 �

�
me

mµ
� 1

3

�
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ⊙ � tan2 θ⊙,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ�
0.

With θc � 0.22 and (φ0ψ�
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ⊙,TBM = 1/2, and the experimental best fit value, tan2 θ⊙,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 � θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ⊙ will pin down the

phase of φ0ψ�
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = �2u : �u : 1, md : ms : mb = �2d : �d : 1 , (20)

where �u � (1/200) = 0.005 and �d � (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ�
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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CGs of 
SU(5) & T´

⇒ connection between leptogenesis & CPV in neutrino oscillation

prediction for Majorana 
phases:  0, π 

correction accounts for discrepancy between exp 
best fit value and TBM prediction for solar angle

28

ybvdφ0

sin 2β = 0.672+0.069
−0.07

γ (deg) = 71+46
−45

α (deg) = 89+21
−13

τ(p → e
+π0) > 8.2× 1033 years (90% CL, SuperK 2009) (1)

τ(p → νK+) > 2.3× 1033 years (90% CL, SuperK 2005) (2)

V
†
e,RMeVe,L = diag(me,mµ,mτ )

V
T
ν,LMνVν,L = diag(m1,m2,m3)

V
†
u,RMuVu,L = diag(mu,mc,mt)

V
†
d,RMνVd,L = diag(md,ms,mb)

current bound: | �m� | ≡
����
�

i=1,2,3

miU
2
ie

���� (3)

�̃ q̃ H̃

����|
√
m1|+ |

√
m3|

���� = 2|
√
m2| for (3ξ0 + η0)(3ξ0 − η0) > 0

����|
√
m1|− |

√
m3|

���� = 2|
√
m2| for (3ξ0 + η0)(3ξ0 − η0) < 0

T
� → GS : �ζ� = ζ0 , �ζ �� = ζ �0

m1 = (3ξ0 + η0)
2 (ζ0ζ

�
0vu)

2

s0Λ

m2 = η20
(ζ0ζ �0vu)

2

s0Λ

m3 = −(−3ξ0 + η0)
2 (ζ0ζ

�
0vu)

2

s0Λ

1
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Numerical Results

• Experimentally:

• Model Parameters at MGUT: 

• CKM Matrix and Quark CPV measures:

α ≡ arg
�
−VtdV ∗

tb

VudV ∗
ub

�
= 110o , (35)

γ ≡ arg
�
−VudV ∗

ub

VcdV ∗
cb

�
= δq = 45.6o , (36)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 2.69× 10−5 , (37)

A = 0.798 (38)
ρ = 0.299 (39)
η = 0.306 (40)

The mass ratios within the same sectors do not have RG corrections. With
the parameters chosen, we get

md : ms : mb = θ4.6
c : θ2.7

c : 1 , (41)
mu : mc : mt = θ7.5

c : θ3.7
c : 1 . (42)

Eq. 43 agree with Rosner et al (with θc � 0.23), which gives

md : ms : mb = θ4.7
c : θ2.7

c : 1 , (43)

In Eq. 42, mc agrees with Rosner et al, while both mu and mc agree with
Fusaoka et al (hep-ph/9712201, PRD57, 3986, 1998), which has, at Mz,

mu : mc : mt = (0.0000142− 0.0000164) : (0.00318− 0.00436) : 1 (44)
� θ7.5

c : θ3.7
c : 1 . (45)

The complex CKM matrix can be rewritten in the Standard Form by re-
defining the quark fields through two diagonal phase matrices:

Vckm →




e−iα1 0 0

0 e−iα2 0
0 0 e−iα3





·




0.974e−i25.4o

0.227ei23.1o
0.00412ei166o

0.227ei123o
0.973e−i8.24o

0.0412ei180o

0.00718ei99.7o
0.0408e−i7.28o

0.999



 ·




e−iβ1 0 0

0 e−iβ2 0
0 0 1





=




0.974 0.227 0.00412e−i45.6o

−0.227− 0.000164ei45.6o
0.974− 0.0000384ei45.6o

0.0411
0.00932− 0.00401ei45.6o −0.0400− 0.000935ei45.6o

1



 ,

(46)

with
α1 = 211.6o, α2 = 180o, α3 = 0, β1 = 123o, β2 = 171.5o . (47)

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 � 0 .
(48)

3

α ≡ arg
�
−VtdV ∗

tb

VudV ∗
ub

�
= 110o , (35)

γ ≡ arg
�
−VudV ∗

ub

VcdV ∗
cb

�
= δq = 45.6o , (36)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 2.69× 10−5 , (37)

A = 0.798 (38)
ρ = 0.299 (39)
η = 0.306 (40)

The mass ratios within the same sectors do not have RG corrections. With
the parameters chosen, we get

md : ms : mb = θ4.6
c : θ2.7

c : 1 , (41)
mu : mc : mt = θ7.5

c : θ3.7
c : 1 . (42)

Eq. 43 agree with Rosner et al (with θc � 0.23), which gives

md : ms : mb = θ4.7
c : θ2.7

c : 1 , (43)

In Eq. 42, mc agrees with Rosner et al, while both mu and mc agree with
Fusaoka et al (hep-ph/9712201, PRD57, 3986, 1998), which has, at Mz,

mu : mc : mt = (0.0000142− 0.0000164) : (0.00318− 0.00436) : 1 (44)
� θ7.5

c : θ3.7
c : 1 . (45)

The complex CKM matrix can be rewritten in the Standard Form by re-
defining the quark fields through two diagonal phase matrices:

Vckm →




e−iα1 0 0

0 e−iα2 0
0 0 e−iα3





·




0.974e−i25.4o

0.227ei23.1o
0.00412ei166o

0.227ei123o
0.973e−i8.24o

0.0412ei180o

0.00718ei99.7o
0.0408e−i7.28o

0.999



 ·




e−iβ1 0 0

0 e−iβ2 0
0 0 1





=




0.974 0.227 0.00412e−i45.6o

−0.227− 0.000164ei45.6o
0.974− 0.0000384ei45.6o

0.0411
0.00932− 0.00401ei45.6o −0.0400− 0.000935ei45.6o

1



 ,

(46)

with
α1 = 211.6o, α2 = 180o, α3 = 0, β1 = 123o, β2 = 171.5o . (47)

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 � 0 .
(48)
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UPMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1








1 0 0
0 eiα21/2 0
0 0 eiα31/2



 (1)

∆m2
31 = (2.40+0.24

−0.22)× 10−3 eV2, ∆m2
21 = (7.65+0.46

−0.40)× 10−5 eV2

sin2 θ23 = 0.5+0.14
−0.12, sin2 θ12 = 0.304+0.044

−0.032, sin2 θ13 = 0.01(≤ 0.040)

sin2 θ13 = 0.01+0.016
−0.011 (1σ)

S =
1
3




−1 2ω 2ω2

2ω2 −1 2ω
2ω 2ω2 −1





Z3 : GT

Z4 : GS , GTST 2

tan2 θ⊙ � tan2 θ⊙,TBM −
1
2
θc cos δ

Mu =




ig 1−i

2 g 0
1−i
2 g g + (1− i

2 )h k
0 k 1



 ytvu

h ≡ φ2
0 = 0.0053

1

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 �

�
me

mµ
� 1

3

�
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ⊙ � tan2 θ⊙,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ�
0.

With θc � 0.22 and (φ0ψ�
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ⊙,TBM = 1/2, and the experimental best fit value, tan2 θ⊙,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 � θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ⊙ will pin down the

phase of φ0ψ�
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = �2u : �u : 1, md : ms : mb = �2d : �d : 1 , (20)

where �u � (1/200) = 0.005 and �d � (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ�
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T �,
the relevant product rule is 3⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBMMνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)

v2
u

MX
,

≡ diag(m1,m2,m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me,mµ,mτ ), leads to a complex
VPMNS = V †

e,LUTBM (see below).
CPT Invariance and CP Violation.—Even though the

complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U†
Rγ0MuQL)† = QLM†

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(�x, t) = αO(�x, t) + α∗
O
†(�x, t) , (19)

where O(�x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(�x, t) CP−→ O
†(−�x, t) , α

CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(�x, t) T−→ O(�x,−t) , α
T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T �. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM†
uUR

CPT−→ QLM†
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T � and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=




ig 1−i

2 g 0
1−i
2 g g + (1− i

2 )h k

0 k 1



 , (25)

Md, MT
e

ybvdφ0ζ0
=




0 (1 + i)b 0

−(1− i)b (1,−3)c 0
b b 1



 , (26)

With b ≡ φ0ψ�
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y�ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ�30 =

−9 × 10−6, the following mass ratios are obtained, md :
ms : mb � θ4.7

c : θ2.7
c : 1, mu : mc : mt � θ8

c : θ3.2
c : 1,

with θc �
�

md/ms � 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 � mb/mt � 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,




0.975e−i26.8o

0.225ei21.1o
0.00293ei164o

0.224ei124o
0.974e−i8.19o

0.032ei180o

0.00557ei103o
0.0317e−i7.33o

0.999



 . (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg
�
−VcdV ∗

cb

VtdV ∗
tb

�
= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg
�
−VtdV ∗

tb

VudV ∗
ub

�
= 114o , (29)

γ ≡ arg
�
−VudV ∗

ub

VcdV ∗
cb

�
= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45× 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have

7  parameters in 
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sector

α ≡ arg
�
−VtdV ∗

tb

VudV ∗
ub

�
= 110o , (35)

γ ≡ arg
�
−VudV ∗

ub

VcdV ∗
cb

�
= δq = 45.6o , (36)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 2.69× 10−5 , (37)

A = 0.798 (38)
ρ = 0.299 (39)
η = 0.306 (40)

The mass ratios within the same sectors do not have RG corrections. With
the parameters chosen, we get

md : ms : mb = θ4.6
c : θ2.7

c : 1 , (41)
mu : mc : mt = θ7.5

c : θ3.7
c : 1 . (42)

Eq. 43 agree with Rosner et al (with θc � 0.23), which gives

md : ms : mb = θ4.7
c : θ2.7

c : 1 , (43)

In Eq. 42, mc agrees with Rosner et al, while both mu and mc agree with
Fusaoka et al (hep-ph/9712201, PRD57, 3986, 1998), which has, at Mz,

mu : mc : mt = (0.0000142− 0.0000164) : (0.00318− 0.00436) : 1 (44)
� θ7.5

c : θ3.7
c : 1 . (45)

The complex CKM matrix can be rewritten in the Standard Form by re-
defining the quark fields through two diagonal phase matrices:

Vckm →




e−iα1 0 0

0 e−iα2 0
0 0 e−iα3





·




0.974e−i25.4o

0.227ei23.1o
0.00412ei166o

0.227ei123o
0.973e−i8.24o

0.0412ei180o

0.00718ei99.7o
0.0408e−i7.28o

0.999



 ·




e−iβ1 0 0

0 e−iβ2 0
0 0 1





=




0.974 0.227 0.00412e−i45.6o

−0.227− 0.000164ei45.6o
0.974− 0.0000384ei45.6o

0.0411
0.00932− 0.00401ei45.6o −0.0400− 0.000935ei45.6o

1



 ,

(46)

with
α1 = 211.6o, α2 = 180o, α3 = 0, β1 = 123o, β2 = 171.5o . (47)

and

|VCKM | =




0.974 0.227 0.00412
0.227 0.973 0.0412

0.00718 0.0408 0.999



 (48)

3

Results from CKMFitter (Moriond 2009) at 3σ are

A = 0.767− 0.841 (11)
λ = 0.2227− 0.2277 (12)
ρ = 0.087− 0.212 (13)
η = 0.307− 0.389 (14)
J = (2.69− 3.37)× 10−5 (15)

The three angles of the unitarity triangle:

α = 76o − 110o (direct meas.) , (16)
β = 20.1o − 30.2o (meas. not in the fit) , (17)
γ = 18o − 130o (dir. meas.) . (18)

And the 3σ allowed range for the CKM matrix elements are

|Vud| = 0.974 (19)
|Vus| = 0.2227− 0.2277 (20)
|Vub| = 0.0031− 0.00395 (measurement not in the fit) (21)
|Vcd| = 0.2226− 0.2276 (22)
|Vcs| = 0.9735 (23)
|Vcb| = 0.0388− 0.0464 (measurement not in the fit) (24)
|Vtd| = 0.00795− 0.00915 (25)
|Vts| = 0.0385− 0.0415 (26)
|Vtb| = 0.999 (27)

With the following input parameters,

b ≡ φ0ψ
�
0/ζ0 = 0.00304 (28)

c ≡ ψ0N0/ζ0 = −0.0172 (29)
k ≡ y�ψ0ζ0 = −0.0266 (30)
h ≡ φ2

0 = 0.00426 (31)
g ≡ φ�30 = 0.0000145 (32)

Making use of these parameters, the complex CKM matrix is,



0.974e−i25.4o

0.227ei23.1o
0.00412ei166o

0.227ei123o
0.973e−i8.24o

0.0412ei180o

0.00718ei99.7o
0.0408e−i7.28o

0.999



 . (33)

The predictions of our model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg
�
−VcdV ∗

cb

VtdV ∗
tb

�
= 23.6o, sin 2β = 0.734 , (34)

2
α ≡ arg

�
−VtdV ∗

tb

VudV ∗
ub

�
= 110o , (35)

γ ≡ arg
�
−VudV ∗

ub

VcdV ∗
cb

�
= δq = 45.6o , (36)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 2.69× 10−5 , (37)

A = 0.798 (38)
ρ = 0.299 (39)
η = 0.306 (40)

The mass ratios within the same sectors do not have RG corrections. With
the parameters chosen, we get

md : ms : mb = θ4.6
c : θ2.7

c : 1 , (41)
mu : mc : mt = θ7.5

c : θ3.7
c : 1 . (42)

Eq. 43 agree with Rosner et al (with θc � 0.23), which gives

md : ms : mb = θ4.7
c : θ2.7

c : 1 , (43)

In Eq. 42, mc agrees with Rosner et al, while both mu and mc agree with
Fusaoka et al (hep-ph/9712201, PRD57, 3986, 1998), which has, at Mz,

mu : mc : mt = (0.0000142− 0.0000164) : (0.00318− 0.00436) : 1 (44)
� θ7.5

c : θ3.7
c : 1 . (45)

The complex CKM matrix can be rewritten in the Standard Form by re-
defining the quark fields through two diagonal phase matrices:

Vckm →




e−iα1 0 0
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0 0 e−iα3





·




0.974e−i25.4o

0.227ei23.1o
0.00412ei166o

0.227ei123o
0.973e−i8.24o

0.0412ei180o

0.00718ei99.7o
0.0408e−i7.28o

0.999



 ·




e−iβ1 0 0

0 e−iβ2 0
0 0 1





=




0.974 0.227 0.00412e−i45.6o

−0.227− 0.000164ei45.6o
0.974− 0.0000384ei45.6o

0.0411
0.00932− 0.00401ei45.6o −0.0400− 0.000935ei45.6o

1



 ,

(46)

with
α1 = 211.6o, α2 = 180o, α3 = 0, β1 = 123o, β2 = 171.5o . (47)

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 � 0 .
(48)
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0.0411
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with
α1 = 211.6o, α2 = 180o, α3 = 0, β1 = 123o, β2 = 171.5o . (47)

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 � 0 .
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predicting: 9 masses, 3 mixing angles, 1 CP 
Phase; all agree with exp within 3σ

form diagonalizable [14], i.e. independent of the values of ξ0 and u0, it is
diagonalized by the tri-bimaximal mixing matrix, UT

TBMMνUTBM = diag(u0 +

3ξ0, u0,−u0 + 3ξ0)
v2
u

MX
≡ diag(m1,m2,m3). While the neutrino mass matrix

is real, the complex charged lepton mass matrix Me, which is diagonalized by,
V †
e,RMeVe,L = diag(me,mµ,mτ ), leads to a complex VPMNS = V †

e,LUTBM (see
below).

2 Numerical Predictions

The predicted charged fermion mass matrices in our model are parametrized in
terms of 7 parameters [8],

Mu

ytvu
=




ig 1−i

2 g 0
1−i
2 g g + (1− i

2 )h k
0 k 1



 , (15)

Md, MT
e

ybvdφ0ζ0
=




0 (1 + i)b 0

−(1− i)b (1,−3)c 0
b b 1



 . (16)

With b ≡ φ0ψ�
0/ζ0 = 0.00304, c ≡ ψ0ζ �0/ζ0 = −0.0172, k ≡ y�ψ0ζ0 = −0.0266,

h ≡ φ2
0 = 0.00426 and g ≡ φ�3

0 = 1.45 × 10−5, the following mass ratios are
obtained, md : ms : mb � θ4.7

c : θ2.7
c : 1, mu : mc : mt � θ7.5

c : θ3.7
c : 1, with

θc �
�

md/ms � 0.225. (These ratios in terms of θc coincide with those give
in [15].) We have also taken yt = 1.25 and ybφ0ζ0 � mb/mt � 0.011 and have
taken into account the renormalization group corrections. As a result of the
GJ relations, realistic charged lepton masses are obtained. Making use of these
parameters, the complex CKM matrix is,




0.974e−i25.4o 0.227ei23.1

o
0.00412ei166

o

0.227ei123
o

0.973e−i8.24o 0.0412ei180
o

0.00718ei99.7
o

0.0408e−i7.28o 0.999



 . (17)

b ≡ φ0ψ
�
0/ζ0 = 0.00304

c ≡ ψ0ζ
�
0/ζ0 = −0.0172

k ≡ y�ψ0ζ0 = −0.0266

h ≡ φ2
0 = 0.00426

g ≡ φ�3
0 = 1.45× 10−5

The predictions of our model for the angles in the unitarity triangle are,
β = 23.6o (sin 2β = 0.734), α = 110o, and γ = δq = 45.6o, (where δq is
the CP phase in the standard parametrization), and they agree with the di-
rect measurements within 1σ of BaBar and 2σ of Belle (M. Antonelli et al in
Ref. [16].) Except for observables whose experimental values are obtained from
direct measurements, comparison between the global fit results and predictions

5
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Frequent Questions & Answers

1. SUSY versus non-SUSY:

When the model is supersymmetrized, the Yukawa Lagrangian that we had in the non-SUSY
version then becomes the Yukawa superpotential in the SUSY version (the only change is to
interpret all the fields as chiral superfields).

The major change is in Higgs and flavon potentials.

2. Proton Decay:

• dimension-6 operators mediated by gauge bosons

3. Reality of the Yukawa couplings and VEVs:

4. Invariants of operator involving ∆45:

5. Alternative Seesaw:

6. Leptogenesis:

• Without the flavor effects:

yt = 1.25

Im(hh†) = 0

• Flavor effects:

Due to the hierarchy in the charged lepton Yukawa coupling constants, the Yukawa inter-
actions Ye, Yµ, Yτ reach equilibrium at different temperatures at 106, 109, and 1012 GeV,
respectively, as determined by Teq = Y

2
Mpl. If leptogenesis occurs at temperature above

1012 GeV, all three flavors are out of equilibrium and thus indistinguishable. One flavor
approximation applies in this region

If leptogenesis occurs at a scale below 1012 GeV, the one flavor approximation is no longer
valid.

• With flavor effects in the usual (i.e. Altarelli-Feruglio) seesaw:

In the usual seesaw realization, with

Wusual
ν = H5FN +NN(ξ + η) , (1)

the resulting RH Majorana mass matrix (MRR) and Dirac neutrino Yukawa matrix (hD)
are

MRR =




2ξ0 + η0 −ξ0 −ξ0
−ξ0 2ξ0 −ξ0 + η0
−ξ0 −ξ0 + η0 2ξ0



Λ (2)

MD =




1 0 0
0 0 1
0 1 0



 v ≡ hDv (3)

The RH Majorana mass matrix is diagonalized by the TBM mixing matrix,

U
T
TBMMRRUTBM = diag(3ξ0 + η0, η0, 3ξ0 − η0)Λ (4)

In the basis where MRR and Me are diagonal, the Dirac neutrino Yukawa matrix reads,

h = U
T
TBMhDUeL (5)

1

CPV entirely from CG coefficients

Direct measurements @ 3σ
(ICHEP2010)

ybvdφ0ζ0

sin 2β = 0.672+0.069
−0.07

γ (deg) = 71+46
−45

α (deg) = 89+21
−13

τ(p → e
+π0) > 8.2× 1033 years (90% CL, SuperK 2009) (1)

τ(p → νK+) > 2.3× 1033 years (90% CL, SuperK 2005) (2)

V
†
e,RMeVe,L = diag(me,mµ,mτ )

V
T
ν,LMνVν,L = diag(m1,m2,m3)

V
†
u,RMuVu,L = diag(mu,mc,mt)

V
†
d,RMνVd,L = diag(md,ms,mb)

current bound: | �m� | ≡
����
�

i=1,2,3

miU
2
ie

���� (3)

�̃ q̃ H̃

����|
√
m1|+ |

√
m3|

���� = 2|
√
m2| for (3ξ0 + η0)(3ξ0 − η0) > 0

����|
√
m1|− |

√
m3|

���� = 2|
√
m2| for (3ξ0 + η0)(3ξ0 − η0) < 0

T
� → GS : �ζ� = ζ0 , �ζ �� = ζ �0

m1 = (3ξ0 + η0)
2 (ζ0ζ

�
0vu)

2

s0Λ

m2 = η20
(ζ0ζ �0vu)

2

s0Λ

m3 = −(−3ξ0 + η0)
2 (ζ0ζ

�
0vu)

2

s0Λ

1
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Numerical Results

• Diagonalization matrix for charged leptons

• MNS Matrix

• Neutrino Masses: using best fit values for ∆m2 

• Majorana phases: 

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 � 0 .
(49)




0.838 0.542 0.0583e−i227o

−0.385− 0.0345ei227o
0.594− 0.0224ei227o

0.705
0.384− 0.0346ei227o −0.592− 0.0224ei227o

0.707



 (50)

→ |UMNS | =




0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707



 (51)

J� = −0.00967 (52)

Charged lepton diagonalization matrix:



0.997ei177o

0.0823ei131o
1.31× 10−5e−i45o

0.0823ei41.8o
0.997ei176o

0.000149e−i3.58o

1.14× 10−6 0.000149 1



 (53)
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The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 � 0 .
(49)
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0.594− 0.0224ei227o

0.705
0.384− 0.0346ei227o −0.592− 0.0224ei227o
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

 (50)

→ |UMNS | =




0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707



 (51)

J� = −0.00967 (52)

Charged lepton diagonalization matrix:



0.997ei177o

0.0823ei131o
1.31× 10−5e−i45o

0.0823ei41.8o
0.997ei176o

0.000149e−i3.58o

1.14× 10−6 0.000149 1



 (53)

sin2 2θatm = 1, tan2 θ⊙ = 0.419, |Ue3| = 0.0583 (54)

4

Note that these predictions do NOT depend on η0 and ξ0

prediction for Dirac CP phase:  δ = 227 degrees

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 � 0 .
(49)




0.838 0.542 0.0583e−i227o

−0.385− 0.0345ei227o
0.594− 0.0224ei227o

0.705
0.384− 0.0346ei227o −0.592− 0.0224ei227o

0.707



 (50)

J� = −0.00967 (51)

4

⇒ connection between leptogenesis
 & CPV in neutrino oscillation

2 independent parameters in neutrino sector

predicting:  3 masses, 3 angles, 3 CP Phases;
both θsol & θatm agree with exp

4

λ = 0.225, A = 0.637, ρ = 0.280 and η = 0.280. These
values are in agreement with current experimental re-
sults [16].

As a result of the GJ relations, our model predicts the
sum rule [9, 17] between the solar neutrino mixing angle
and the Cabibbo angle in the quark sector,

tan2 θ! ! tan2 θ!,TBM −
1

2
θc cos δ! . (32)

In addition, our model predicts θ13 ∼ θc/3
√

2. Numeri-
cally, the diagonalization matrix for the charged leptons
is,







0.997ei177o

0.08ei132o

1.2 × 10−5e−i45o

0.08ei41.9o

0.997ei177o

1.40 × 10−4e−i3.47o

10−6 1.4 × 10−4 1






. (33)

This leads to small deviation from the TBM pattern, giv-
ing

VPMNS =







0.837e−i179o

0.544e−i173o

0.0566ei138o

0.364e−i3.86o

0.609e−i173o

0.705ei3.45o

0.408ei180o

0.577 0.707






,

(34)
which gives sin2 θatm = 1, tan2 θ! = 0.422 and |Ue3| =
0.0566. The two VEV’s, u0 = −0.0593 and ξ0 = 0.0369,
give ∆m2

atm = 2.4 × 10−3 eV2 and ∆m2
! = 8.0 ×

10−5 eV2. As the three masses are given in terms of
two VEV’s, there exists a mass sum rule, m1 − m3 =
2m2, leading to normal mass hierarchy, ∆m2

atm > 0 [9].
The leptonic Jarlskog is predicted to be J! = −0.0094,
and equivalently, this gives a Dirac CP phase, δ! =
−46.9o in the standard parametrization. With such δ!,
the correction from the charged lepton sector can ac-
count for the difference between the TBM prediction and
the current best fit value for θ!. Our model predicts
(m1, m2, m3) = (0.0156,−0.0179, 0.0514) eV, with Ma-
jorana phases α21 = π and α31 = 0.

Our model has nine input parameters, predicting a to-
tal of twenty-two physical quantities: 12 masses, 6 mix-
ing angles, 2 Dirac CP violating phases and 2 Majorana
phases.

Conclusion.—We propose the complex group theoreti-
cal CG coefficients as a novel origin of CP violation. This
is manifest in our model based on SU(5) combined with
the double tetrahedral group, T ′. Due to the presence
of the doublet representations in T ′, there exist complex
CG coefficients, leading to explicit CP violation in the
model, while having real Yukawa couplings and scalar
VEVs. The predicted CP violation measures in the quark
sector are consistent with the current experimental data.
The leptonic Dirac CP violating phase is predicted to
be δ! ∼ −47o, which may be relevant for generating the
cosmological matter asymmetry.
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atm = 2.4 × 10−3 eV2 and ∆m2
! = 8.0 ×

10−5 eV2. As the three masses are given in terms of
two VEV’s, there exists a mass sum rule, m1 − m3 =
2m2, leading to normal mass hierarchy, ∆m2

atm > 0 [9].
The leptonic Jarlskog is predicted to be J! = −0.0094,
and equivalently, this gives a Dirac CP phase, δ! =
−46.9o in the standard parametrization. With such δ!,
the correction from the charged lepton sector can ac-
count for the difference between the TBM prediction and
the current best fit value for θ!. Our model predicts
(m1, m2, m3) = (0.0156,−0.0179, 0.0514) eV, with Ma-
jorana phases α21 = π and α31 = 0.

Our model has nine input parameters, predicting a to-
tal of twenty-two physical quantities: 12 masses, 6 mix-
ing angles, 2 Dirac CP violating phases and 2 Majorana
phases.

Conclusion.—We propose the complex group theoreti-
cal CG coefficients as a novel origin of CP violation. This
is manifest in our model based on SU(5) combined with
the double tetrahedral group, T ′. Due to the presence
of the doublet representations in T ′, there exist complex
CG coefficients, leading to explicit CP violation in the
model, while having real Yukawa couplings and scalar
VEVs. The predicted CP violation measures in the quark
sector are consistent with the current experimental data.
The leptonic Dirac CP violating phase is predicted to
be δ! ∼ −47o, which may be relevant for generating the
cosmological matter asymmetry.
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SuperK best fit:  δ = 220 degrees

Dirac phase the only 
non-vanishing leptonic CPV phase

of new physics models is not appropriate, because the global fit is based on the
Standard Model with loop corrections. (Nevertheless, even in this case, our pre-
dictions for the Wolfenstein paramteres, λ = 0.227, A = 0.798, ρ = 0.299 and
η = 0.306, are very close to the global fit values except for ρ. Our prediction for
the Jarlskog invariant, J ≡ Im(VudVcbV

∗
ubV

∗
cd) = 2.69×10−5, in the quark sector

also agrees with the current global fit value.) Potential direct measurements for
these parameters at the LHCb can test our predictions.

As a result of the GJ relations, our model predicts the sum rule [8, 17]
between the solar neutrino mixing angle and the Cabibbo angle in the quark
sector, tan2 θ⊙ � tan2 θ⊙,TBM + 1

2θc cos δ�, with δ� being the leptonic Dirac
CP phase in the standard parametrization. In addition, our model predicts
θ13 ∼ θc/3

√
2. Numerically, the diagonalization matrix for the charged lepton

mass matrix combined with UTBM gives the PMNS matrix,




0.838e−i178o 0.543e−i173o 0.0582ei138

o

0.362e−i3.99o 0.610e−i173o 0.705ei3.55
o

0.408ei180
o

0.577 0.707



 , (18)

which gives sin2 θatm = 1, tan2 θ⊙ = 0.420 and |Ue3| = 0.0583. The two VEV’s,
u0 = −0.0593 and ξ0 = 0.0369, give ∆m

2
atm = 2.4 × 10−3 eV2 and ∆m

2
⊙ =

8.0×10−5 eV2. As the three masses are given in terms of two VEV’s, there exists
a mass sum rule, m1 −m3 = 2m2, leading to normal mass hierarchy, ∆m

2
atm >

0 [8]. The leptonic Jarlskog is predicted to be J� = −0.00967, and equivalently,
this gives a Dirac CP phase, δ� = 227o. With such δ�, the correction from the
charged lepton sector can account for the difference between the TBM prediction
and the current best fit value for θ⊙. Our model predicts (m1,m2,m3) =
(0.0156,−0.0179, 0.0514) eV, with Majorana phases α21 = π and α31 = 0.

ξ0 = −0.0791 , η0 = 0.1707 , s0Λ = 1012 GeV (19)

|m1| = 0.00134 eV, |m2| = 0.00882 eV, |m3| = 0.0504 eV (20)

3 Leptogenesis

Due to the hierarchy in the charged lepton Yukawa coupling constants, the three
charged leptons, e, µ, τ If leptogenesis occurs at a scale below 1012 GeV, the
one flavor approximation is no longer valid.

In the usual seesaw realization, with

Wusual
ν = H5FN +NN(ξ + η) , (21)

the resulting RH Majorana mass matrix (MRR) and Dirac neutrino Yukawa
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sin 2β = 0.672+0.069
−0.07

γ (deg) = 71+46
−45

α (deg) = 89+21
−13

τ(p → e
+π0) > 8.2× 1033 years (90% CL, SuperK 2009) (1)

τ(p → νK+) > 2.3× 1033 years (90% CL, SuperK 2005) (2)

V
†
e,RMeVe,L = diag(me,mµ,mτ )

V
T
ν,LMνVν,L = diag(m1,m2,m3)

V
†
u,RMuVu,L = diag(mu,mc,mt)

V
†
d,RMνVd,L = diag(md,ms,mb)

current bound: | �m� | ≡
����
�

i=1,2,3

miU
2
ie

���� (3)

�̃ q̃ H̃

����|
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m1|+ |

√
m3|

���� = 2|
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����|
√
m1|− |

√
m3|

���� = 2|
√
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m1 = (3ξ0 + η0)
2 (ζ0ζ

�
0vu)

2

s0Λ

m2 = η20
(ζ0ζ �0vu)

2

s0Λ

m3 = −(−3ξ0 + η0)
2 (ζ0ζ

�
0vu)

2

s0Λ

tan2 θ⊙,exp = 0.468

S0 = 1012 GeV

�S� = S0
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Predictions for LFV Radiative Decay

• SUSY GUTs: slepton-neutralino and sneutrino-chargino loop:

• CMSSM: at MGUT, slepton mass matrices flavor blind

• RG evolution: generate off diagonal elements in slepton mass matrices

• dominant contribution: LL slepton mass matrix

31

very model 
dependent

Borzumati, Masiero (1986)

Hisano, Moroi, Tobe, Yamaguichi (1995)

Petcov, Profumo, Takanishi, Yaguna (2003)

good approximation to 
full evolution effects:
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Predictions for LFV Radiative Decay

• in SUSY SU(5) x T’ model:

• degenerate RH masses

•  ratios of branching fractions depend on mixing & light neutrino masses

• predicting  

• m0 = 50 GeV, M1/2 = 200 GeV, A0 = 7m0 :

• Br(τ → μ + γ) =1.38 x 10-9

• Br(τ → e + γ) = 4.59 x 10-11

• Br(μ → e + γ) = 9.23 x 10-12
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Y+Y = 

M.-C.C., Mahanthappa, Meroni, Petcov, under preparation
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Sakharov’s Conditions

• Necessary conditions for Bayogenesis [Matter-Antimatter Asymmetry]

‣ baryon number violation

‣ CP violation

‣ out-of-equilibrium

• CP violation in quark sector gives too small baryon number asymmetry

• neutrino oscillation opens up new possibility

‣ leptogenesis: require leptonic CP phase

33Mu-Chun Chen, UC Irvine                                                     LISHEP2011                                                CBPF, Rio de Janeiro, 07/05/2011
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Leptogenesis

• RH heavy neutrino decay:

• quantum interference of tree-level & one-loop diagrams ⇒ primordial lepton number 

asymmetry  

• asymmetry (RH neutrino Ni decay into lepton of flavor α)  

•    

34
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Fig. 1.7. Diagrams in SM model with RH neutrinos that contribute to the lepton num-

ber asymmetry through the decay of the RH neutrinos. The asymmetry is generated

due to the interference of the tree-level diagram (a) and the one-loop vertex correction

(b) and self-energy (c) diagrams.

That is, the heavy neutrinos are not able to follow the rapid change of the

equilibrium particle distribution, once the temperature dropped below the

mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry

is generated due to the CP asymmetry that arises through the interference

of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives

the term, f(x), after carrying out the loop integration,

f(x) =
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1− (1 + x) ln

�
1 + x

x
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. (1.85)

Diagram (c) is the one-loop self-energy. For |Mi −M1| � |Γi − Γ1|, the

self-energy diagram gives the term

g(x) =

√
x

1− x
, (1.86)

in Eq. 1.84. For hierarchical RH neutrino masses, M1 � M2, M3, the

asymmetry is then given by,
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depend on parameters in both high 
energy (i.e. RH neutrinos) & low energy 
(i.e. effective light neutrinos) sectors

EW non-perturbative effects:
∆L → ∆B

∆L
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R: high energy parameters
U: low energy information

Leptogenesis ↔ Low Energy Observables

• three flavors distinguished by Yukawa interactions:

• Yτ, Yμ, Ye equilibrium at temperatures below 1012, 109 ,106 GeV, respectively
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where m = diag(m1, m2, m3) is the diagonal matrix of the light neutrino
masses, M is the diagonal matrix of the right-handed neutrino masses and U
is the MNS matrix. The orthogonal matrix R is defined by this equation as
R = vM−1/2hUm−1/2. In the basis where the right-handed neutrino mass
matrix and the charged lepton mass matrix are diagonal, the neutrino Dirac
Yukawa matrix can be written as h = V ν †

R diag(h1, h2, h3)V ν
L . Therefore,

the low energy CP violation in the lepton sector can arise from either the
left-handed sector through V ν

L , the right-handed sector through V ν
R , or from

both. From hh†v2 = V ν †
R diag(h2

1, h
2
2, h

2
3)V

ν
Rv2 = M1/2RmR†M1/2, it can

be seen that the phases of R are related to those in the right-handed sector
through V ν

R . The asymmetry ε1 given in Eq. 1.89, which is derived with
one-flavor approximation, can be rewritten as follows [65],

ε1 = −
3M1

16πv2

Im
(∑

ρ m2
ρR

2
1ρ

)
∑

β mβ |R1β |2
. (1.187)

Assuming the right-handed sector is CP invariant, low energy CP phases
can then arise entirely from the left-handed sector and thus are irrelevant for
ε1, which vanishes because the orthogonal matrix R is real. If leptogenesis
takes place at T < 1012 GeV, the flavor effects must be taken into account.
In this case the asymmetry in each flavor is given by [65],

εα = −
3M1

16πv2

Im
(∑

βρ m1/2
β m3/2

ρ U∗
αβUαρR1βR1ρ

)
∑

β mβ |R1β |2
. (1.188)

The contribution of each of these individual asymmetries to the total asym-
metry is then weighted by the corresponding washout factor. Therefore,
barring accidental cancellations, the presence of the MNS matrix elements
in Eq. 1.188 signifies the need for low energy CP violation in order to
have leptogenesis. Hence if leptonic CP violation in neutrino oscillations is
observed at future very long baseline experiments [66] and if lepton num-
ber violation is established by observing neutrinoless double beta decay, it
would even more strongly suggest than it has been that leptogenesis be the
source for the origin of the cosmological baryon asymmetry.

Finally, a fundamental problem in the current treatment of leptogen-
esis is the fact that the Boltzmann equations utilized in the present cal-
culations are purely classical treatment. However, the collision terms are
zero-temperature S-matrix elements which involve quantum interference.
In addition, the time evolution of the system should be treated quantum
mechanically. These lead to the need of quantum Boltzmann equations

M = diag(M1,M2,M3)

1
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can then arise entirely from the left-handed sector and thus are irrelevant for
ε1, which vanishes because the orthogonal matrix R is real. If leptogenesis
takes place at T < 1012 GeV, the flavor effects must be taken into account.
In this case the asymmetry in each flavor is given by [65],

εα = −
3M1

16πv2

Im
(∑

βρ m1/2
β m3/2

ρ U∗
αβUαρR1βR1ρ

)
∑

β mβ |R1β |2
. (1.188)

The contribution of each of these individual asymmetries to the total asym-
metry is then weighted by the corresponding washout factor. Therefore,
barring accidental cancellations, the presence of the MNS matrix elements
in Eq. 1.188 signifies the need for low energy CP violation in order to
have leptogenesis. Hence if leptonic CP violation in neutrino oscillations is
observed at future very long baseline experiments [66] and if lepton num-
ber violation is established by observing neutrinoless double beta decay, it
would even more strongly suggest than it has been that leptogenesis be the
source for the origin of the cosmological baryon asymmetry.

Finally, a fundamental problem in the current treatment of leptogen-
esis is the fact that the Boltzmann equations utilized in the present cal-
culations are purely classical treatment. However, the collision terms are
zero-temperature S-matrix elements which involve quantum interference.
In addition, the time evolution of the system should be treated quantum
mechanically. These lead to the need of quantum Boltzmann equations

(light neutrino masses)

(RH neutrino masses)

R:  phases in RH sector

combination relevant for 
leptogenesis in 1-flavor 

approximation

R: high energy parameters
U: low energy information
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Leptogenesis ↔ Low Energy Observables

• three flavors distinguished by Yukawa interactions:

• Yτ, Yμ, Ye equilibrium at temperatures below 1012, 109 ,106 GeV, respectively

• Flavor effect:

• T ~ M1 > 1012 GeV:  Ye, Yμ, Yτ out of equilibrium ⇒ 1 flavor regime 

• no model independent connection can exist

only depend on high 
energy phases (R)
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real R, complex U: 
     non-vanishing low energy CPV (h)
     vanishing leptogenesis

presence of low energy leptonic 
CPV

(neutrino oscillation, neutrinoless 
double beta decay)

Leptogenesis ↔ Low Energy Observables

• one flavor approximation

• no model independent connection can exist

real R, complex U: 
     non-vanishing low energy CPV (h)
     vanishing leptogenesis

presence of low energy leptonic 
CPV

(neutrino oscillation, neutrinoless 
double beta decay)

leptogenesis ≠ 0
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leptogenesis ≠ 0

Abada, Davidson, Josse-Michaux, Losada, Riotto, 2006; Nardi, Nir, Roulet, Racker, 2006



Leptogenesis ↔ Low Energy Observables

• leptogenesis at T ~ M1 < 1012 GeV:

• flavors distinguishable (Teq = Y2 Mpl) ⇒ non-universal wash-out effects

• T ~ M1 ~(109 - 1012) GeV:  Ye, Yμ out of equilibrium; Yτ in equilibrium

• 2 flavor regime: (εe + εμ), ετ evolve independently 

• T ~ M1 ~(106 - 109) GeV:  Ye, out of equilibrium; Yμ, Yτ in equilibrium

• 3 flavor regime: εe, εμ, ετ evolve independently 

• asymmetry associated with each flavor
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where m = diag(m1, m2, m3) is the diagonal matrix of the light neutrino
masses, M is the diagonal matrix of the right-handed neutrino masses and U
is the MNS matrix. The orthogonal matrix R is defined by this equation as
R = vM−1/2hUm−1/2. In the basis where the right-handed neutrino mass
matrix and the charged lepton mass matrix are diagonal, the neutrino Dirac
Yukawa matrix can be written as h = V ν †

R diag(h1, h2, h3)V ν
L . Therefore,

the low energy CP violation in the lepton sector can arise from either the
left-handed sector through V ν

L , the right-handed sector through V ν
R , or from

both. From hh†v2 = V ν †
R diag(h2

1, h
2
2, h

2
3)V

ν
Rv2 = M1/2RmR†M1/2, it can

be seen that the phases of R are related to those in the right-handed sector
through V ν

R . The asymmetry ε1 given in Eq. 1.89, which is derived with
one-flavor approximation, can be rewritten as follows [65],

ε1 = −
3M1

16πv2

Im
(∑

ρ m2
ρR

2
1ρ

)
∑

β mβ |R1β |2
. (1.187)

Assuming the right-handed sector is CP invariant, low energy CP phases
can then arise entirely from the left-handed sector and thus are irrelevant for
ε1, which vanishes because the orthogonal matrix R is real. If leptogenesis
takes place at T < 1012 GeV, the flavor effects must be taken into account.
In this case the asymmetry in each flavor is given by [65],

εα = −
3M1

16πv2

Im
(∑

βρ m1/2
β m3/2

ρ U∗
αβUαρR1βR1ρ

)
∑

β mβ |R1β |2
. (1.188)

The contribution of each of these individual asymmetries to the total asym-
metry is then weighted by the corresponding washout factor. Therefore,
barring accidental cancellations, the presence of the MNS matrix elements
in Eq. 1.188 signifies the need for low energy CP violation in order to
have leptogenesis. Hence if leptonic CP violation in neutrino oscillations is
observed at future very long baseline experiments [66] and if lepton num-
ber violation is established by observing neutrinoless double beta decay, it
would even more strongly suggest than it has been that leptogenesis be the
source for the origin of the cosmological baryon asymmetry.

Finally, a fundamental problem in the current treatment of leptogen-
esis is the fact that the Boltzmann equations utilized in the present cal-
culations are purely classical treatment. However, the collision terms are
zero-temperature S-matrix elements which involve quantum interference.
In addition, the time evolution of the system should be treated quantum
mechanically. These lead to the need of quantum Boltzmann equations

leptogenesis ≠ 0 low energy 
CPV ≠ 0
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Connection in Specific Models

• models for neutrino masses:
• additional symmetries or textures

• reduce the number of parameters ⇒ connection can be established

• texture assumption (may be realized by symmetry)
• models with 2 RH neutrinos (2 x 3 seesaw)

• sign of baryon asymmetry ↔ sign of CPV in ν oscillation

• all CP come from a single source

• models with spontaneous CP violation:
• minimal LR model: only 1 physical leptonic CP phase
• SM + vectorial quarks + singlet scalar

• SCPV in SO(10): <126>B-L complex
• SUSY SU(5) x T′ Model:

• geometrical origin of CP violation ⇒ only lepton Dirac CP phase ≠ 0  

Frampton, Glashow, Yanagida, 2002

M.-.C.C, Mahanthappa, 2005

Branco, Parada, Rebelo, 2003

Achiman, 2004, 2008

Kuchimanchi & Mohapatra,  2002

M.-.C.C, Mahanthappa, 2009
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Leptogenesis in SUSY SU(5) x T′

• TBM from broken discrete symmetries through type-I seesaw

• exact TBM:

• no leptogenesis as 

• true even when flavor effects included

• SU(5) x T′ model: corrections to TBM from charged lepton sector

Dirac CPV phase ⇒ non-vanishing lepton number asymmetry

Radiatively induced RH neutrino mass splitting ⇒ resonant enhanced 
asymmetry ⇒ sufficient for observed baryon number asymmetry

Dirac phase the only non-vanishing leptonic CPV phase
⇒ connection between leptogenesis & low energy CPV

sin θ13 = 0 ⇒ J
lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31

Im(yDy
†
D) = 0

(MDM
†
D)11

M1
∝

�
mc

mt

�2

vL < O(10−7) eV

ΓN1

H|T=M1

=
1

0.01 eV
(MDM

†
D)11

M1
< 1

� = 10−2
×∆�

�
< (10−5

− 10−4)

= 0

J
lep
CP ∼ sinαL

νµ and νµ disappear

νe and νe do not

P (νa → νb) =
���νb|ν, t

���2 � sin2 2θ sin2

�
∆m

2

4E
L

�

νµ → ντ

ν�L =
3�

j=1

U�jνjL � = e, µ, τ

U = V




1 0 0
0 e

iα21/2 0
0 0 e

iα31/2





1

sin θ13 = 0 ⇒ J
lep
CP ∝ sin θ13 = 0

CP violation through Majorana phases: α21, α31
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†
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×∆�

�
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P (νa → νb) =
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2
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L
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νµ → ντ

ν�L =
3�

j=1

U�jνjL � = e, µ, τ

U = V




1 0 0
0 e

iα21/2 0
0 0 e

iα31/2





1

E. Jenkins, A. Manohar, 2008
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Frequent Questions & Answers

1. SUSY versus non-SUSY:

When the model is supersymmetrized, the Yukawa Lagrangian that we had in the non-SUSY
version then becomes the Yukawa superpotential in the SUSY version (the only change is to
interpret all the fields as chiral superfields).

The major change is in Higgs and flavon potentials.

2. Proton Decay:

• dimension-6 operators mediated by gauge bosons

3. Reality of the Yukawa couplings and VEVs:

4. Invariants of operator involving ∆45:

5. Alternative Seesaw:

6. Leptogenesis:

• Without the flavor effects:

yt = 1.25

Im(hh†) = 0

• Flavor effects:

Due to the hierarchy in the charged lepton Yukawa coupling constants, the Yukawa inter-
actions Ye, Yµ, Yτ reach equilibrium at different temperatures at 106, 109, and 1012 GeV,
respectively, as determined by Teq = Y

2
Mpl. If leptogenesis occurs at temperature above

1012 GeV, all three flavors are out of equilibrium and thus indistinguishable. One flavor
approximation applies in this region

If leptogenesis occurs at a scale below 1012 GeV, the one flavor approximation is no longer
valid.

• With flavor effects in the usual (i.e. Altarelli-Feruglio) seesaw:

In the usual seesaw realization, with

Wusual
ν = H5FN +NN(ξ + η) , (1)

the resulting RH Majorana mass matrix (MRR) and Dirac neutrino Yukawa matrix (hD)
are

MRR =




2ξ0 + η0 −ξ0 −ξ0
−ξ0 2ξ0 −ξ0 + η0
−ξ0 −ξ0 + η0 2ξ0



Λ (2)

MD =




1 0 0
0 0 1
0 1 0



 v ≡ hDv (3)

The RH Majorana mass matrix is diagonalized by the TBM mixing matrix,

U
T
TBMMRRUTBM = diag(3ξ0 + η0, η0, 3ξ0 − η0)Λ (4)

In the basis where MRR and Me are diagonal, the Dirac neutrino Yukawa matrix reads,

h = U
T
TBMhDUeL (5)

1

In usual seesaw realization:     
   R = diagonal   ⇒ εiα = 0

M.-C.C, K.T. Mahanthappa, 
arXiv:1107.xxxx

matrix (hD) are

MRR =




2ξ0 + η0 −ξ0 −ξ0
−ξ0 2ξ0 −ξ0 + η0
−ξ0 −ξ0 + η0 2ξ0



Λ (22)

MD =




1 0 0

0 0 1

0 1 0



 v ≡ hDv (23)

The RH Majorana mass matrix is diagonalized by the TBM mixing matrix,

UT
TBMMRRUTBM = diag(3ξ0 + η0, η0, 3ξ0 − η0)Λ (24)

In the basis where MRR and Me are diagonal, the Dirac neutrino Yukawa matrix

reads,

h = UT
TBMhDUeL (25)

Thus the R matrix is given by

R = vM−1/2hUMNSm
−1/2

= vM−1/2
(UT

TBMhDUeL)UMNSm
−1/2

= vM−1/2UT
TBMhDUeLU

†
eLUTBMm

−1/2

= vM−1/2UT
TBMhDUTBMm

−1/2

= vM−1/2m−1/2 → diagonal (26)

h : Dirac Yukawa in Me, MRR diagonal basis

M = diag(M1,M2,M3), RH neutrino absolute masses

m = diag(m1,m2,m3), light neutrino absolute masses

R = vM−1/2Uν,RMDUTBMm
−1/2 → real, non-diagonal (12) block (27)

M ∝ I, Uν,R =




1 0 0

0 1/
√
2 −i/

√
2

0 1/
√
2 i/

√
2



 (28)

The seesaw mechanism then gives the following effective neutrino

4 Conclusion.

The work of M-CC was supported, in part, by the National Science Foundation

under grant no. PHY-0709742. The work of KTM was supported, in part, by

the Department of Energy under Grant no. DE-FG02-04ER41290.
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Sum Rules: Quark-Lepton Complementarity

• QLC-I

• QLC-II

• testing these sum rules could be a more robust way to distinguish different 
models

mixing 
parameters

best fit 3σ range

θq
23 2.36o 2.25o - 2.48o

θq
12 12.88o 12.75o - 13.01o

θq
13 0.21o 0.17o - 0.25o

mixing 
parameters

best fit 3σ range

θe
23 42.8o 35.5o - 53.5o

θe
12 34.4o 31.5o - 37.6o

θe
13 5.6o ≤ 12.5o 

Quark Mixing Lepton Mixing

θc + θsol ≅ 45o

tan2θsol ≅ tan2θsol,TBM + (θc / 2) * cos δe 

θq23 + θe23 ≅ 45o

Raidal, ‘04; Smirnov, Minakata, ‘04

Ferrandis, Pakvasa; King; Dutta, 
Mimura; M.-C.C., Mahanthappa θe13 ≅ θc / 3√2

improved δθ12 from 
SNO+, SuperK possible

(BM)

(TBM)
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measuring leptonic 
mixing parameters 
to the precision of 

those in quark 
sector



Other Possibilities

• Tri-bimaximal Mixing Accidental or NOT?

• current data precision: TBM can be accidental ⇒ open up other possibilities

• Golden Ratio for solar angle

• Dodeca Mixing Matrix from D12 Symmetry

Datta, Ling, Ramond, ‘03; 
Z2 x Z2: Kajiyama, Raidal, Strumia, ‘07; 
A5:  Everett, Stuart, ‘08; ...

J. E. Kim, M.-S. Seo, arXiv:1005.4684 [hep-ph]

leading order: 

   θc = 15o, θsol = 30o, θatm = 45o

12 = 360o / 30o  ⇒ Z12

                     15o ⇒ Z2
} Z12  x Z2 = D12

breaking of D12 : 

   θc = 15o → 13.4o 

   θsol = 30o + O(ε), θ13 = O(ε)θc + θsol = 45o  (not from GUT symmetry)

Albright, Rodejohann (2009); Abbas, Smirnov (2010)

tan2θsol = 1/Φ2 = 0.382,  (1.4σ below best fit)

Φ = (1 + √5) / 2 = 1.62 

40Mu-Chun Chen, UC Irvine                                                     LISHEP2011                                                CBPF, Rio de Janeiro, 07/05/2011



TeV Scale Seesaw Models

• Without new interactions:

• type-I seesaw 

• RH neutrino produced by gauge interaction

• production cross section suppressed by heavy-light mixing

• generally decouple from collider physics

• type-II seesaw

• TeV scale doubly charged Higgs ⇔ small couplings

• unique signatures:

• produced through gauge interaction

• independent of light-heavy mixing 

• 300 fb-1 for M∆ ~ 600 GeV at LHC

41

mν �= 0

yD, mν → 0

MR ∼ 100 GeV

mD ∼ me ∼ 10−4 GeV

∝ V =
mD

MR
∼ 10−4 GeV

100 GeV
= 10−6

V > 0.01

V < 0.1

qq → �+α �−β + jets (α �= β)

y∆LL

∆++ → e+e−, µ+µ−, τ+τ−

1

Han, Mukhopadhyaya, Si, Wang, ‘07; 
Akeroyd, Aoki, Sugiyama, ‘08; ...

Perez, Han, Huang, Li, Wang, ‘08; ...

Kersten, Smirnov, 2007

Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.

NR

!

φ

YNY †
N

φ

!

φ

!

φ

!

∆

µ∆

Y∆

ΣR

!

φ

YΣY †
Σ

φ

!

Figure 1: The three generic realizations of the Seesaw mechanism, depending on the
nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.
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For a recent review: 
M.-C. C., J.R. Huang, arXiv:1105.3188
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TeV Scale Seesaw Models

• With new interactions:

• SUSY LR Model:

• TeV Scale WR ⇔ small Yukawa

• tested via searches for WR

• production independent of light-heavy mixing

• LHC: WR  up to (3-4) TeV , νR in (100-1000) GeV range

• More Naturally: inverse seesaw or higher dimensional operators or Extra Dim

• SO(10): adjoint fermions + inverse seesaw

• inverse seesaw

• adjoint SU(5)

• higher dimensional effective operators

• TeV Scale Extra Dimension

42

Azuleos et al 06; del Aguila et al 07, Han 
et al 07; Chao, Luo, Xing, Zhou, ‘08; ...
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TeV Scale Seesaw Models

• MSSM with bi-linear R-Parity Violation

• mixing angle ↔ neutralino decay:

43

3

standard model and couplings of the form cΛi, where c is some combination of (generation independent) parameters.

These couplings, which determine (the generation structure of) the neutrino mass matrix, also determine the couplings

χ0
i − l±i −W∓ and χ±

i − νi −W∓ [25]. Taking the ratio of decays to different generations the prefactors c drop out

and one finds Eq. (1), when the angle tan θ23 is identified with the atmospheric neutrino angle. One-loop corrections

tend to modify this relation, but, as long as the loop corrections are smaller than the tree-level neutrino mass, Eq. (1)

is a good approximation [25].

In other words, as seen in Fig. 2, the LSP decay pattern is predicted by the low-energy measurement of the

atmospheric angle [21, 25], currently determined by underground low-energy neutrino experiments [7], as

sin2 θatm = 0.50+0.07
−0.06

the 2 and 3 σ ranges being 0.39–0.63 and 0.36–0.67, respectively.

Figure 2: Ratio of χ̃0
1 decay branching ratios, Br(χ̃0

1 → µq′q̄) over Br(χ̃0
1 → τq′q̄) in terms of the atmospheric angle in bilinear

R parity violation [25]. The shaded bands include the variation of the model parameters in such a way that the neutrino masses

and mixing angles fit the required values within 3σ.

In this paper we show how a high-energy measurement of LSP decay branching ratios at the LHC allows for a

redetermination of θatm and hence a clear test of the model. We provide quantitative estimates of how well this ratio

of branchings should be measured at LHC in order to be competitive with current oscillation measurements. This

issue has already been addressed but only at the parton level, using some semirealistic acceptance and reconstruction

cuts, and for just one specific mSUGRA point [35].

II. FRAMEWORK OF OUR ANALYSIS

Our goal is to present a more detailed analysis of the LHC potential to measure the LSP branching ratios required

to test the relation shown in Eq. (1), going beyond the approximations made in the previous work of Ref. [35]. The

generation of the supersymmetric spectrum and decays in the scope of the RmSUGRA model was carried out using the

SPheno package [36]2. The event generation was done employing PYTHIA [37] with the RmSUGRA particle properties

being passed into it in the SUSY Les Houches accord (SLHA) format [38, 39]. Jets were defined using the subroutine

PYCELL with a cone size of ∆R = 0.4.

2 An updated version including bilinearR parity violation can be obtained at http://www.physik.uni-wuerzburg.de/∼porod/SPheno.html.

de Campos, Eboli, Hirsch, Margo, 
Porod, Restrepo, Valle, 2010

2

persymmetry (SUSY) with bilinear violation of R parity can be tested at the LHC in a crucial way and potentially

falsified. We identify the regions of minimal supergravity (mSUGRA) parameters, event reconstruction efficiencies and

luminosities where the LHC will be able to probe the atmospheric neutrino mixing angle with sensitivity competitive

to its low-energy determination by underground experiments, both for 7 and 14 TeV center-of-mass energies.

For the sake of definiteness, we consider the minimal supergravity model supplemented with bilinear R parity

breaking [22–24] added at the electroweak scale; we refer to this scenario as RmSUGRA. In this effective model one

typically finds that the atmospheric scale is generated at tree level by a weak-scale neutralino-exchange seesaw, while

the solar scale is induced radiatively [22]. The LSP lacks a symmetry to render it stable and, given the neutrino mass

scales indicated by oscillation experiments, typically decays inside the LHC detectors [22, 23, 25] 1. As an illustration

we depict the neutralino LSP decay length in Fig. 1. We can see from Fig. 1 that the expected decay lengths are large

enough to be experimentally resolved, leading to displaced vertex events [33, 34].

Figure 1: χ̃0
1 decay length in the plane m0,m1/2 for A0 = −100 GeV, tan β = 10 and µ > 0.

More strikingly, one finds that in such a RmSUGRA model one has a strict correlation between neutralino de-

cay properties measurable at high-energy collider experiments and neutrino mixing angles determined in low-energy

neutrino oscillation experiments, that is

tan2 θatm !
BR(χ̃0

1 → µ±W∓)

BR(χ̃0
1 → τ±W∓)

. (1)

The derivation of Eq. (1) can be found in [25]. In short, the relation between the neutralino decay branching ratio

and the low-energy neutrino angle in the bilinear model can be understood in the following way. At tree-level in

RmSUGRA the neutrino mass matrix is given by [22]

meff =
M1g2+M2g′

2

4 det(Mχ0)







Λ2
e ΛeΛµ ΛeΛτ

ΛeΛµ Λ2
µ ΛµΛτ

ΛeΛτ ΛµΛτ Λ2
τ






(2)

where Λi = µvi+vDεi and εi and vi are the bilinear superpotential parameters and scalar neutrino vacuum expectation

value, respectively. Equation (2) is diagonalized by two angles; the relevant one for this discussion is the angle

tan θ23 = −Λµ

Λτ
. One can understand this tree-level mass as a seesaw-type neutrino mass with the right-handed

neutrino and the Yukawa couplings of the ordinary seesaw replaced by the neutralinos of the minimal supersymmetric

1 We may add, parenthetically, that such schemes require a different type of dark matter particle, such as the axion [28]. Variants with
other forms of supersymmetric dark matter, such as the gravitino [29–32], are also possible.
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2.3. Radiative Seesaw

The smallness of the neutrino masses can also be explained if the neutrino masses
are generated radiatively30. This is achieved in Ref. 31 at two-loops by having
additional singly-charged SU(2)L singlet scalar fields and doubly-charged SU(2)L
singlet scalar fields (Zee-Babu Model). With an additional Z2 symmetry, it is also
possible for the light neutrino masses to arise only at the higher loop levels with
TeV scale RH neutrinos32,33,34. Given that the new particles introduced in these
TeV scale models differ model by model, the collider signatures35 are quite model
dependent. It is to be noted that in the class of models with Z2 symmetry, there is
naturally a dark matter candidate32,33,34,36. The new particles involved in the loop
may also be charged under the color SU(3)37. In this case, the production cross
section can be enhanced.

Radiative neutrino mass generation described above can naturally be embe-
ded into models with Coleman-Weinberg symmetry breaking38. The new TeV scale
scalars required achieve radiative EW symmetry breaking also contribute to the
generation of neutrino masses.

2.4. MSSM with R-Parity Violation

Neutrino mass generation can also arise in models39 with R-parity violation, through
the Bi-linear lepton number violating operators,

WR = �iL̂iĤu , (13)

where �i are coefficients of the operators of unit of mass. As the above operators
are the only R-parity violating operator allowed in the model, proton decay is
not induced. In a specific minimal realization40 in MSSM with the Bi-linear lepton
number violating operators, a correlation is found41 between the atmospheric mixing
angle and branching fractions of neutralino decays,

tan2 θatm � BR(χ̃0
1 → µ

±
W

∓)

BR(χ̃0
1 → τ±W∓)

, (14)

as the scale of ∆m
2
atm is generated at tree level through the exchange of a weak scale

neutralino. The scale of ∆m
2
⊙ arises radiatively. At the LHC with 100 fb−1 at 14

TeV, it is possible to probe a large fraction of the parameter space admitted by the
neutrino oscillation data in this scenario.

2.5. TeV Scale Extra Dimension

Warped extra dimension is an alternative to supersymmetry as a solution to the
gauge hierarchy problem, which requires the scale of the first Kaluza-Klein (KK)
mode is on the order of a TeV. Due to the small overlap between the wave functions
of the lepton doublets and the RH neutrinos, small neutrino masses of the Dirac
type can naturally be generated42. (Neutrinos of the Majorana type can also be
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TeV Scale Seesaw and Non-anomalous U(1)

• SM x U(1)NA + 3 νR:   charged under U(1)NA symmetry, broken by <ϕ>

• U(1)NA forbids usual dim-4 Dirac operator and dim-5 Majorana operator

• neutrino masses generated by very high dimensional operators

• anomaly cancellation: relate flavorful fermion charges

⇒  predict mass hierarchy and mixing
• neutrinos can either be Dirac or Majorana

• TeV scale Z′: probing flavor sector at LHC
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Fig. 3. Schematic diagrams for Froggatt-Nielsen mechanism. Here a and b are the family indices.
(χ, χ) are the vector-like Froggatt-Nielsen fields. Figure (a): The tree level diagram generating
the mass of the third family is given; (b): The mass of the lighter matter fields generated by this
diagram is ∼ O((<θ>

M
)2); (c): Higher order diagrams generate mass ∼ O((<θ>

M
)n).

lighter matter fields are produced by higher dimensional interactions involving, in
addition to the regular Higgs fields, exotic vector-like pairs of matter fields and the
so-called flavons (flavor Higgs fields). Schematic diagrams for these interactions are
shown in Fig.3. After integrating out superheavy vector-like matter fields of mass
M , the mass terms of the light matter fields get suppressed by a factor of <θ>

M ,
where < θ > is the VEVs of the flavons and M is the UV-cutoff of the effective
theory above which the flavor symmetry is exact. When the family symmetry is
exact, only the (33) entry is non-zero. When the family symmetry is spontaneously
broken, the zero entries will be filled in at some order O(<θ>

M ). Suppose the family
symmetry allows only the (23) and (32) elements at order O(<θ>

M ),




0 0 0
0 0 0
0 0 1



 SSB

−→




0 0 0
0 0 <θ>

M

0 <θ>
M 1



 . (15)

Then a second fermion mass is generated at order O((<θ>
M )2) after the family

symmetry is spontaneous broken. The fermion mass hierarchy thus arises.
To illustrate how the Froggatt-Nielsen mechanism works, suppose there is a

vector-like pair of matter fields (χ⊕χ) with mass M and carrying the same quantum
numbers as ψR under the vertical gauge group (e.g. SM or SO(10)), but different
quantum numbers under the family symmetry. It is therefore possible to have a
Yukawa coupling yχψLH where H is the SM doublet Higgs if the family symmetry
permits such a coupling. In addition, there is a gauge singlet θ which transforms
non-trivially under the family symmetry. Suppose the coupling y

′

ψRχθ is allowed
by the family symmetry, we then obtain the following seesaw mass matrix, upon H

Λ ~ TeV!
low seesaw scale achieved 
with all couplings ~ O(1)

8
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FIG. 11: The forward backward asymmetry distribution as a
function of the dilepton transverse momentum for MZ� = 1
TeV in the case of

√
s = 10 TeV with 500 fb−1 of data. The

red lines represent the electron channel and the dotted blue
lines denote the muon channel.
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FIG. 12: The forward backward asymmetry distribution as
a function of the dilepton invariant mass for MZ� = 1 TeV
in the case of

√
s = 10 TeV with 500 fb−1 of data. The red

lines represent the electron channel and the dotted blue lines
denote the muon channel.

for which 3a is an integer.

V. CONCLUSION

We investigate the collider signatures of a TeV scale

non-anomalous U(1)ν model, which generates at the

TeV scale small neutrino masses and their mixing an-

gles. Since the U(1)ν symmetry, which is different from

U(1)B-L, is generation dependent, all gauge anomalies are

cancelled with no exotic fields other than the three right-

handed neutrinos. Specifically, we have investigated the

LHC’s discovery potential of such a flavorful Z �
. Through

the excess in the dilepton invariant mass distribution, at

the center of mass energy of
√

s = 14 TeV, the Z �
of mass

up to 4.5 TeV can be discovered at 5σ with 100 fb
−1

of

data. To establish the flavorful nature of Z �
requires a

distinction between the e+e− and µ+µ− channels. While

it requires a much higher integrated luminosity, it is pos-

�5 5
a

�10

�5

5

10

b

FIG. 13: Region of parameter space for (a, b) which satisfies

0.01 <
ΓZ�
MZ�

< 0.1.

sible to distinguish these two decay channels at sufficient

significance level. For the bench mark point we consider

in our analysis, at
√

s = 14 TeV, a 5σ distinction be-

tween the e and µ channels can be obtained with 500

fb
−1

of data, for MZ� up to 3 TeV. At
√

s = 10 TeV,

8.32 fb
−1

of integrated luminosity is required for MZ� =

1 TeV. We have also studied the possibility of measur-

ing the U(1)ν charges of the leptons using the forward

backward asymmetry distributions of the dilepton chan-

nels. With a sufficient integrated luminosity, it is possi-

ble to observe the different asymmetry distributions for

the dieletron and dimuon channels in the low invariant

mass and low transverse momentum regions. This thus

allows to establish the generation-dependent nature of

the U(1)ν model.
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Prediction for Sparticle Spectrum

• predict testable (RG invariant) mass sum rules in AMSB among sparticles at 
colliders

functions of gauge couplings, Yukawa 
couplings and gravitino mass (m3/2)

Flavor Physics at the Collider
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Constraints on Extra Dimension 

• Set-up: 1 large extra dimension

• 3 RH neutrinos propagate in bulk

• SM lepton doublets & Higgs: confined to SM brane

• naturally small Dirac mass due to volume suppression

• mixing between active neutrinos and KK modes:

46
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2

where U and W are the mixing matrices for ac-

tive and KK modes, respectively. Here λ(N)
j is

a dimensionless eigenvalue of the evolution equa-
tion [1] which depends on the j-th neutrino mass
(mj), hence on the mass hierarchy, L is the base-
line and E is the neutrino energy.
To illustrate what is expected we plot in Fig. 1

the survival probabilities for νµ → νµ and ν̄e →
ν̄e as a function of E. We show the behavior for
the normal and inverted mass hierarchy assum-
ing the lightest neutrino to be massless (m0 = 0).
The effect of this large extra dimension (LED)
depends on the product mja. We observe that
in the νµ → νµ channel the effect of LED is basi-
cally the same for normal (NH) and inverted (IH)
hierarchies, since in this case all the amplitudes
involved are rather large. On the other hand, for
ν̄e → ν̄e the effect is smaller for NH as in this case
the dominant mja term is suppressed by θ13.

3. Results

As we can observe in Fig. 1 the main effect of
LED is a shift in the oscillation maximum with
a decrease in the survival probability due to os-
cillations to KK modes. This makes experiments
such as KamLAND and MINOS, which are cur-
rently the best experiments to measure ∆m2

⊙ and
|∆m2

atm|, respectively, also the best experiments
to test for LED.
We have used the recent MINOS [2] and Kam-

LAND [3] results and reproduced their allowed
regions for the standard oscillation parameters.
For this and the LED study we have modified
GLoBES [4] according to our previous analysis of
these experiments in [5] and [6].
In Fig. 2, we present the excluded region in

the plane m0 × a, by MINOS, KamLAND and
their combined data at 90 and 99% CL (2 dof).
When finding these regions all standard oscilla-
tion parameters where considered free. To ac-
count for our previous knowledge of their values
[7], we have added Gaussian priors to the χ2 func-
tion. As expected the limits provided by MINOS
(νµ → νµ) are basically the same for NH and IH.
From their data we obtain a < 7.3(9.7) × 10−7

m in the hierarchical case for m0 → 0 and
a < 1.2(1.6) × 10−7 m at 90 (99)% CL for de-
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Figure 1. In the top (bottom) panel we show the
survival probability for νµ (ν̄e) as a function of
the neutrino energy for L = 735 km (180 km) for
a = 0 (no LED, black curve) and a = 5 × 10−7

m for normal hierarchy (dashed blue curve) and
inverted hierarchy (dotted red curve).

generate neutrinos with m0 = 0.2 eV. We have
verified that the inclusion of LED in the fit of
the standard atmospheric oscillation parameters
does not modify very much the region in the plane
sin2 2θ23 × |∆m2

atm| allowed by MINOS data. In
fact the best fit point as well as the χ2

min remain
the same as in the case without LED.

KamLAND data provide, for hierarchical neu-
trinos with m0 → 0, a competitive limit only for
IH, in this case one gets a < 8.5(9.8) × 10−7 m
at 90 (99)% CL. For degenerate neutrinos with
m0 = 0.2 eV one also gets from KamLAND
a < 2.0(2.3) × 10−7 m at 90 (99)% CL. The in-
clusion of LED in the fit of the standard solar
oscillation parameters here enlarges the region
in the plane tan2 θ12 × ∆m2

⊙ allowed by Kam-
LAND data. The best fit point changes from
∆m2

⊙ = 7.6 × 10−5 eV2 and tan2 θ12 = 0.62 to
∆m2

⊙ = 8.6×10−5 eV2 and tan2 θ12 = 0.42, how-

Probing Extra Dimensions with Neutrino Oscillations
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We consider a model where sterile neutrinos can propagate in a large compactified extra dimension (a) giving
rise to Kaluza-Klein (KK) modes and the Standard Model left-handed neutrinos are confined to a 4-dimensional
spacetime brane. The KK modes mix with the standard neutrinos modifying their oscillation pattern. We examine
current experiments in this framework obtaining stringent limits on a.

1. Introduction

The introduction of singlet neutrino fields

which can propagate in extra spatial dimen-

sions as well as in the usual three dimensional

space may lead to naturally small Dirac neutrino

masses, due to a volume suppression. If those sin-

glets mix with standard neutrinos they may have

an impact on neutrino oscillations, even if the

size of the largest extra dimension is smaller than

2×10
−4

m (the current limit from Cavendish-type

experiments which test the Newton Law).

2. Theoretical Framework

Here we consider the model discussed in Ref. [1]

where the 3 standard model (SM) left-handed

neutrinos ναL and the other SM fields, including

the Higgs (H), are confined to propagate in a

4-dimensional spacetime, while 3 families of SM

singlet fermions (Ψα
) can propagate in a higher

dimensional spacetime with at least two compact-

ified extra dimensions, one of these (y) compact-

ified on a circle of radius a, much larger than the

size of the others so that we can in practice use a

5-dimensional treatment.

The singlet fermions have Yukawa couplings

λαβ with the Higgs and the SM neutrinos leading

∗Talk given at NOW2010, Neutrino Oscillation Workshop,

Conca Specchiulla, Otranto, Italy, September 4-11, 2010.

E-mail: zukanov@fma.if.usp.br

to Dirac masses and mixings among active species

and sterile KK modes. This can be derived from

the action

S =

�
d
4
x dy ıΨα ΓJ ∂JΨα

+

�
d
4
x ı ν̄αL γµ ∂

µναL

+

�
d
4
xλαβ H ν̄αL Ψβ

R(x, 0) + h.c.,

where ΓJ , J = 0, .., 4 are the 5-dimensional

Dirac matrices, that after dimensional reduction

and electroweak symmetry breaking gives rise to

the effective neutrino mass Lagrangian

Leff =

�

α,β

m
D
αβ

�
ν(0)αL ν(0)βR +

√
2

∞�

N=1

ν(0)αL ν(N)
βR

�

+

�

α

∞�

N=1

N

a
ν(N)
αL ν(N)

αR + h.c.,

where the Greek indices α,β = e, µ, τ , the cap-
ital Roman index N = 1, ...,∞, m

D
αβ is a Dirac

mass matrix, ν(0)αR , ν(N)
αR and ν(N)

αL are the linear

combinations of the singlet fermions that couple

to the SM neutrinos ν(0)αL.

In this context one can compute the active neu-

trino transition probabilities

P (ν(0)α → ν(0)β ;L) =����
�
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• shift in oscillation minima
• global reduction of survival probabilities
• extra wiggles



Constraints on Extra Dimension 

• constraints from neutrino experiments
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FIG. 4: Allowed region for the standard oscillation parame-

ters in the sin
2
2θ23 − |∆m2

31| plane from MINOS νµ → νµ
data. In the upper panel we assumed no LED while in the

lower panel we allowed for LED in the fit.

steeply χ2 function, effectively decreasing the∆χ2 for the
large a. This contributes to enlarge the allowed region,
counteracting the effect of adding more statistics.

In the limit m0 → 0 we get a < 0.68 (0.95) µm for NH
and a < 0.85 (0.98) µm for IH at 90% (99%) CL. For
the degenerate case, if m0 = 0.2 eV then a < 0.15 (0.17)
µm at 90% (99%) CL independent of the neutrino mass
hierarchy.

IV. FUTURE TERRESTRIAL NEUTRINO
OSCILLATION EXPERIMENTS

Here we discuss the possibility of improving the current
limits on LED by the future neutrino oscillation experi-
ments Double CHOOZ, NOνA and T2K.

10�8 10�7 10�6
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100

a �m�
m
0
�eV�

excluded

Normal hierarchy
99�, 90� C.L.
Inverted hierarchy
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MINOS ΝΜ�ΝΜ

FIG. 5: Same as Fig. 3 but excluded by MINOS νµ → νµ
data.
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FIG. 6: Same as Fig. 3 but excluded by KamLAND and MI-

NOS combined data.

A. Reactor ν̄e → ν̄e Experiment: Double CHOOZ

The Double CHOOZ experiment [16], is a reactor neu-
trino oscillation experiment that is being built in France
which aims to explore the range 0.03 < sin2 2θ13 < 0.2.
There will be two identical 8.3 t liquid scintillator de-
tectors, one at 400 m and the other at 1.05 km from
the nuclear cores. The expected luminosity is 400 t GW
y. We will consider 3 years of data taking in our calcu-
lations. In fitting the data we have varied |∆m2

31| and
sin2 2θ13 freely, and considered priors on all other stan-
dard parameters (See Appendix B).
In Fig. 7 we show our expected sensitivity for sin2 2θ13

as a function of |∆m2
31| for Double CHOOZ after 3 years

current table top experiment:
      a < 2 x 10-4 m



Curing FCNC Problem: Family Symmetry vs MFV

• low scale new physics severely constrained by flavor violation

• Minimal Flavor Violation

• assume Yukawa couplings the only source of flavor violation

• Example: Warped Extra Dimension

• wave function overlap ⇒ naturally small Dirac neutrino mass

• non-universal bulk mass terms (c) ⇒ FCNCs at tree level ⇒ Λ > O(10) TeV

• FCNCs: present even in the limit of massless neutrinos 

• tree-level:  μ-e conversion, μ→3e, etc

• charged current 

• one-loop:  μ→e+γ, τ→e+γ, τ→μ+γ
• fine-tuning to get large mixing and mild mass hierarchy for neutrinos

48

vew ∼ e−πkRMpl

ψ(0) ∼ e(1/2−c)ky
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Curing FCNC Problem: Family Symmetry vs MFV

• Two approaches:

• Minimal Flavor Violation in RS

• T´ symmetry in the bulk for quarks & leptons:

• TBM neutrino mixing: common bulk mass term, no tree-level FCNCs

• TBM mixing and masses decouple: no fine-tuning

• realistic masses and mixing angles in quark sector

• no tree-level FCNCs in lepton sector and 1-2 family of quark sector

• Family Symmetry: alternative to MFV to avoid FCNCs in TeV scale new physics

• many family symmetries violate MFV ⇒ possible new FV contributions

M.-C.C., K.T. Mahanthappa, F. Yu (PLB2009);
A4 for leptons: Csaki, Delaunay, Grojean, Grossmann

B. Massive Neutrino Case

To accommodate the massive neutrinos and lepton mixing, we introduce three right-

handed neutrinos in the model. As mentioned in Sec. II, the RH neutrinos reside in different

SU(2)R doublets from those that contain the iso-spin singlet charged leptons. The right-

handed neutrinos couple to the lepton doublets to form the Dirac mass terms. The relevant

Lagrangian in this case is given by

Llep
5D ⊃ LCLL + eCee + NCNN + H LYee + HLYνN . (13)

The smallness of neutrino masses is then archived by localizing the right-handed neutrinos

close to the Planck brane such that their overlap with the lepton doublets is small.

With the MFV assumption, the 5D bulk mass matrices are related to the 5D Yukawa

couplings as

Ce = aY †
e Ye, CN = dY †

ν Yν , CL = c(ξYνY
†
ν + YeY

†
e ) , (14)

where a, d, c are O(1) parameters. With three right-handed neutrinos, the global flavor

symmetry is U(3)L × U(3)e × U(3)N , with which one can rotate to a basis where either Ye

or Yν is diagonal. In the following analysis, we work in the basis in which Ye is diagonal and

it is denoted by Ŷe. In this basis, Yν can be written as Yν = V5DŶν , where V5D is the 5D

leptonic mixing matrix. All the flavor mixings in the lepton sector are generated by V5D. In

this basis, both Ce and CN are diagonal. However, due to the term which is proportional to

the parameter ξ, the 5D bulk mass matrix CL is not diagonal and it can be written as,

CL = c(ξV5DĈNV †
5D + Ĉe) , (15)

where ĈN ≡ dŶνŶ †
ν and Ĉe ≡ aŶeŶ †

e are diagonal. The eigevalues of CL give the zero

mode localization of the SU(2)L doublets along the fifth dimension. Eq. (15), which results

from the MFV assumption, leads to a set of conditions that constrain the 5D bulk mass

parameters.

The non-diagonal term in Eq. (15) is the source of the FCNC in the charged lepton

sector. Because this term is proportional to ξ, the size of the contributions to FCNC is thus

determined by the value of ξ, which turns out to be small to accommodate realistic lepton

masses, as we show below. Because Eq. (15) involves the unknown mixing matrix V5D, to

7

quark sector: A. Fitzpatrick, G. Perez, L. Randall (2007)
lepton sector: M.-C.C., H.B. Yu (2008)
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Conclusions

• current data consistent with TBM mixing

• finite group family symmetry T´ x SU(5): 

• group theoretical origin of mixing

• CP violation from complex CG coefficients 

• QLC:

• More precise measurements of oscillation parameters important for pinning 
down the underlying new physics

• New interactions (gauge symmetry, extra dimensions, SUSY): may probe flavor 
sector at colliders 

• If T2K result holds up ⇒ large deviation from TBM

• Future data will tell!

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ≡ λ = 0.227, s23 ≡ Aλ2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 � 0 .
(49)




0.838 0.542 0.0583e−i227o

−0.385− 0.0345ei227o
0.594− 0.0224ei227o

0.705
0.384− 0.0346ei227o −0.592− 0.0224ei227o

0.707



 (50)

→ |UMNS | =




0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707



 (51)

J� = −0.00967 (52)

Charged lepton diagonalization matrix:



0.997ei177o

0.0823ei131o
1.31× 10−5e−i45o

0.0823ei41.8o
0.997ei176o

0.000149e−i3.58o

1.14× 10−6 0.000149 1



 (53)

sin2 2θatm = 1, tan2 θ⊙ = 0.419, |Ue3| = 0.0583 (54)

tan2 θ⊙ � tan2 θ⊙,TBM +
1
2
θc cos δ (55)

4

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 �

�
me

mµ
� 1

3

�
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ⊙ � tan2 θ⊙,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ�
0.

With θc � 0.22 and (φ0ψ�
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ⊙,TBM = 1/2, and the experimental best fit value, tan2 θ⊙,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 � θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ⊙ will pin down the

phase of φ0ψ�
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = �2u : �u : 1, md : ms : mb = �2d : �d : 1 , (20)

where �u � (1/200) = 0.005 and �d � (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ�
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)

8

δ = 227 degrees

50

quark CP phase:  γ = 45.6 degrees
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Backup

• If T2K result holds up ⇒ 
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FIGURE 1. Lepton flavor model predictions for sin2 !13.

observed. Both the T2K Collaboration at JPARC and the
NO#A Collaboration at Fermilab are also expected to
probe a similar reach with their #µ neutrino beams [17].

Even if #̄e depletion is observed with some accuracy,
it is apparent from the two histograms that the order
of 10 - 20 models may survive which must still be
differentiated. One suggestion is to make scatterplots of
sin2 !13 vs. sin2 !12 and sin2 !12 vs. sin2 !23. We have
attempted to do this in Figs. 3, 4, and 5 for both the lepton
flavor models and grand unified models, where only the
central value predictions are plotted. Most of the models
considered favor central values of sin2 !12 lying below
0.333, the value for exact tri-bimaximal mixing. This is
in agreement with the present value extracted in Eq. (1),
but central values for sin2 !23 ≥ 0.5 are preferred, while
the best extracted value is 0.466 from Eq. (1).
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differentiated. One suggestion is to make scatterplots of
sin2 !13 vs. sin2 !12 and sin2 !12 vs. sin2 !23. We have
attempted to do this in Figs. 3, 4, and 5 for both the lepton
flavor models and grand unified models, where only the
central value predictions are plotted. Most of the models
considered favor central values of sin2 !12 lying below
0.333, the value for exact tri-bimaximal mixing. This is
in agreement with the present value extracted in Eq. (1),
but central values for sin2 !23 ≥ 0.5 are preferred, while
the best extracted value is 0.466 from Eq. (1).
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