

CP Violation in B Decays with LHCb Experiment

Alvaro Gomes Instituto de Física, UFRJ

On behalf of LHCb Collaboration

LISHEP 2011 CBPF, Rio de Janeiro

- CKM Matrix and CP Violation
- The LHCb Experiment and Performance
- Main LHCb Physics Objectives:
 - B_{s} oscillation phase ϕ_{s}
 - \bullet CKM angle γ from Tree and Loops diagrams
 - CP Violation in charm decays
- Covered here:
 - β measurement
 - β_s prospect
 - γ prospect
- Results and Perspectives

• CP Violation is introduced in the Standard Model via a complex phase in the CKM matrix

• From unitary:

$$V_{ub}^* V_{cd} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

• CKM Matrix unitarity provides the following triangle:

• β angle is already well measured

• Angles and sides measured independently.

- Any result not compatible with the triangle means new physics!
- If $V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$ relation is used:

$$\beta_{s} = \arg\left\{\frac{-V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right\}$$

 $\bullet \ \gamma$ angle currently with a high uncertanty!

• γ angle measurement is important for the CKM unitarity in order to quantify New Physics (NP) amplitudes and phases!

CP Violation on LHCb

• The LHCb has potential to provide a precise γ measurement which is a missing part for a global Standard Model (SM) consistency;

+ γ measurements may lead to large NP contribution, especially in B_d and B_s system (more details later);

• The LHCb has also potential for measuring CP violation in D decays (see Carla Gobel's presentation);

• The LHCb experiment combined with LHC machine can provide accurate measurements on rare decays that serves as tests for SM;

The LHCb Experiment

The LHCb Experiment

• Putting everything together:

LHCb Event Display

• Challenge for the Trigger System!

The LHCb Trigger

• The trigger is divided in two main levels and optimized for the following channels:

- B_u → Kππ;
- $B_s \rightarrow D_s K;$
- $B_u \rightarrow D^0 K;$
- $B_u \rightarrow HH;$
- $B_d \rightarrow K^*ee;$
- $B_s \rightarrow J/\psi \Phi;$
- $B_s \rightarrow \mu\mu;$
- $B_d \rightarrow K^* \mu \mu;$
- $D \rightarrow KK\pi;$
- D → μμπ;
- $B_s \rightarrow Semileptonic;$
- $B_d \rightarrow Semileptonic;$
- $B_d \rightarrow K^*\gamma;$

- All channels represent an important physics measurement for LHCb experiment.
- Crucial to provide precise CP Violation results!

 $B \rightarrow J/\psi K_s$

- It's a golden mode for $sin 2\beta$ measurements;
- Both B^0 and \overline{B}^0 decays to the same final state;
- In this case, the CP violation comes from interference between mixing and decay;

• Asymmetry expected in the time-dependent decay rate:

$$A_{J/\psi K_{S}}(t) = \frac{\Gamma(B^{0}(t) \to J / \psi K_{S}) - \Gamma(B^{0}(t) \to J / \psi K_{S})}{\Gamma(\overline{B^{0}}(t) \to J / \psi K_{S}) + \Gamma(B^{0}(t) \to J / \psi K_{S})}$$

$$A_{J/\psi K_{S}}(t) = S_{J/\psi K_{S}} \sin(\Delta m_{t}t) - C_{J/\psi K_{S}} \cos(\Delta m_{t}t)$$
Direct CP Violation Interference CP Violation

- In the SM: C = 0; $S = sin 2\beta$
- $\bullet\ sin 2\beta$ well established by Belle and BaBar collaborations

 $\sin 2\beta = 0.673 \pm 0.023$

Tagging at LHCb

- B^0 and \overline{B}^0 have the same final state;
- Flavour tagging \rightarrow procedure to determine the flavour of the reconstructed B meson at production;

- sin2β depends directly on tagging efficiency!
- Tagging algorithm optimized and calibrated on real data with $B^0 \rightarrow D^* \mu \nu$, $B \rightarrow J/\psi K$ and $B \rightarrow J/\psi K^{0*}$

Tagging at LHCb LHCb-CONF-2011-010

6

t [ps]

• Tagging working properly:

B → J/ ψ K_s in LHCb LHCb-CONF-2011-004

• Raw asymmetry between $B^0 - B^0$ just computed!

$$S_{J/\psi Ks} = 0.53^{+0.28}_{-0.29} (stat) \pm 0.05 (syst)$$
$$sin 2\beta = 0.673 \pm 0.023$$

$B_s \rightarrow J/\psi \ \phi, f_0 \ in \ LHCb$

- For B_s decays also the interference between direct decay amplitude and mixing amplitude allow observation of a CP violation phase $\rightarrow 2\beta_s!$
- β_s in SM is 20 times smaller than 2β phase just measured.

$$2\beta_{\rm s} = -0.0363 \pm 0.0017$$

- β_s phase can be drastically increased by the presence of NP and it is accessible via $B_s \rightarrow J/\psi \phi$ decays.
- However, the final state consists of spin-1 particle hence an angular analisys is needed \rightarrow More statistics is needed to gain sensibility in β_s .
- f_0 is scalar and J/ ψ is a vector particle. A final state $B_s \rightarrow J/\psi f_0$ is CP eingestate. If this decays is abundant enough, it simplifies the study!

- The $B_s \rightarrow J/\psi f_0$ mode has been observed for the first time at LHCb!
- Its rate is considerably large:

CP Violation from Tree-Level Decays *Phys.Lett.B253:483,1991;Phys.Lett.B265:172,1991 **Phys.Rev.Lett.78:3257,1997

- \bullet The main goal to study CP Violation in Tree-Level decays is to measure the angle $\gamma.$
- The current γ values is:

BaBar:
$$\gamma = (68 \pm 14 \pm 4 \pm 3)^{\circ}$$

Belle: $\gamma = (78 \pm 12 \pm 4 \pm 9)^{\circ}$
CKMFit: $\gamma = (69 \pm 20)^{\circ}$
UTFit: $\gamma = (72 \pm 11)^{\circ}$

• Many decays modes allow γ measurements through interferences between $b \rightarrow c$ and $b \rightarrow u$ transitions:

CP Violation from Loop-Level Decays

• CP Violation also appears from interferences between Tree and Loop diagrams

Direct CP Violation in $B \rightarrow hh$

LHCb-CONF-2011-011

- The direct CP asymmetry is well established for $B^0 \rightarrow K\pi$.
- Asymmetry production is controlled from $B_{\mu} \rightarrow J/\psi$ K (pp collisions!)
- Detector asymmetry controlled with magnet up/down data with D^* and $D^0 \rightarrow K\pi$

$$A_{cp}(B^{0} \rightarrow K^{+}\pi^{-}) = -0.074 \pm 0.033 \pm 0.008$$
$$A_{cp}(B_{s}^{-0} \rightarrow \pi^{+}K^{-}) = 0.15 \pm 0.19 \pm 0.02$$

HFAG and CDF Respectivelly

CP Violation in $B \rightarrow hhh$

- Charmless charged B decays where h stands for protons, kaons and pions.
- Exploit the interferences between Tree and Loops diagrams to extract γ .
- Dalitz plot (DP) fit using a modeled amplitude \rightarrow model dependent and long term task!
- Before DP fit one can evaluate the anisotropy in each bin of the Dalitz Plot defined as:

$$DP S_{CP} = \frac{N_{+}(i) - N_{-}(i)}{\sqrt{N_{+}(i) + N_{-}(i)}}.$$
Phys.Rev.D80:096006,2009

- In the case of CP symmetry conserved, the S_{cp} distribution is a gaussian centered at 0 and with unit width!
- Strong CP violation signature especially in the interference regions of the DP.
- Also useful for neutral B decays!

CP Violation in $B \rightarrow hhh$

Conclusions and Perspectives

• The LHCb Experiment has shown a great potential to measure different paramaters related to CP violation.

• The B \rightarrow J/ ψ K_s analysis already measured a sin2 β measurement compatible with world average:

$$S_{J/\psi Ks} = 0.53^{+0.28}_{-0.29} \text{ (stat) } \pm 0.05 \text{ (syst)}$$

• The $B\to J/\psi~f_0$ mode have been first observed and it is abundant enough to allow a β_s measurement without an angular analysis

$$\frac{\Gamma(B_{s} \to J/\psi f_{0}, f_{0} \to \pi\pi)}{\Gamma(B_{s} \to J/\psi \phi, \phi \to KK)} = 0.0252 \begin{array}{c} ^{+0.046+0.027} \\ ^{-0.032-0.033} \end{array}$$

- The LHCb experiment already have a direct CP violation measurement from $B^0 \to K\pi$ mode

$$A_{cp}(B^{0} \rightarrow K^{+}\pi^{-}) = -0.074 \pm 0.033 \pm 0.008$$
$$A_{cp}(B_{s}^{0} \rightarrow \pi^{+}K^{-}) = 0.15 \pm 0.19 \pm 0.02$$

• Prospects with Tree and Loop level: Anisotropy in the Dalitz Plot to identify CP violation and γ measurement using ADS, GWL and Dalitz Plot analysis.

Stay tuned for Summer conferences: first results from 2011 data!