Summary of CP Violation and Rare-Decay Results from the Tevatron

LISHEP: Workshop on LHC, Present and Future Rio de Janeiro, Brazil July 5th 2011

> Mark Williams Fermilab International Fellow Lancaster University, UK

the state of the s

Results Presented in this Talk

- Updated measurement of same-sign dimuon asymmetry (D0) New!! (Last week)
- Review of measurements of CPV phase β_s in $B^0_s \rightarrow J/\psi \phi$ decays (CDF, D0)
- Measurement of relative BR for $B_s^0 \rightarrow J/\psi f_0$ (D0, CDF) and first lifetime measurement of a B_s^0 CP eigenstate (CDF) New!! (June 2011)
- First Evidence for pure annihilation decay $B_s^0 \rightarrow \pi\pi$ (CDF) (May 2011)
- "ADS" analysis of doubly Cabibbo-suppressed decays $B^{\pm} \rightarrow D^{0}\pi^{\pm}$ (K[±]) (CDF) (April 2011)
- Search for CPV in $B_s^0 \rightarrow \varphi \varphi$ decays (CDF) (April 2011)
- Measurement of CPV in $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+K^-$ decays (CDF) (February 2011)
- Search for rare-decay $B_s^{\ 0} \rightarrow \mu^+ \mu^-$ (CDF, D0) (September 2010)
- Integrated mixing probability χ0 (CDF) (January 2011)

2

Tevatron accelerator located at the Fermilab site, 30 miles west of Chicago;

Collides protons and antiprotons at centre-of-mass energy 1.96 TeV;

Accelerator performance better than ever – learning from the past;

In final push before collisions stop at the end of September 2011.

Experimental Strengths

CDF Experiment

Large tracker (silicon + drift chamber) for excellent mass resolution

Particle ID: dE/dx gives good separation between kaons and pions;

Displaced-track trigger allows hadronic HF decays to be probed to high precision.

Wide acceptance in muon system ($|\eta| < 2.5$)

Regular reversal of toroid (muon-system) and solenoid (tracker) magnet polarities – cancels many detector asymmetries.

Thick shielding before muon system – hadronic punch-though suppressed.

Part I: CPV and Rare-Decays with Dimuons $\mu^{+} \rightarrow \mu^{+} \rightarrow \mu^{-} \rightarrow \mu^{-}$

CPV in Mixing

Neutral $B^{0}_{(q=d,s)}$ mesons mix into their antiparticles via box diagrams:

Process not CP symmetric $-\mathbf{R}(\mathbf{B}^0_q \to \mathbf{\overline{B}}^0_q) \neq \mathbf{R}(\mathbf{\overline{B}}^0_q \to \mathbf{B}^0_q) - \text{due to complex phase } \varphi_{(d,s)}$ in quark mixing matrix, but...

...SM prediction of resulting asymmetry is **too small to explain observed matter dominance** in the universe. **New particles** entering loops can enhance this asymmetry significantly.

Measure CPV through asymmetry of decay products.

Flavor-specific semileptonic asymmetries defined for both B_{s}^{0} and B_{d}^{0} :

$$a^{q}{}_{sl} = \frac{N(\bar{\mathbf{B}}^{0}{}_{q} \to B^{0}{}_{q} \to \boldsymbol{\mu}^{+}X) - N(\bar{\mathbf{B}}^{0}{}_{q} \to \bar{\mathbf{B}}^{0}{}_{q} \to \boldsymbol{\mu}^{-}X)}{N(\bar{\mathbf{B}}^{0}{}_{q} \to B^{0}{}_{q} \to \boldsymbol{\mu}^{+}X) + N(\bar{\mathbf{B}}^{0}{}_{q} \to \bar{\mathbf{B}}^{0}{}_{q} \to \boldsymbol{\mu}^{-}X)} = \frac{\Delta\Gamma_{q}}{\Delta M_{q}} \tan\varphi_{q}$$

Physical parameters characterizing B⁰_q system

Measuring CPV in Mixing

D0 experiment measures an inclusive asymmetry, with contributions from both B_d^0 and B_s^0 :

$$a^{b}{}_{sl} = \frac{N(\overline{\mathbf{B}^{0}} \to \mu^{+}X) - N(\overline{\mathbf{B}^{0}} \to \mu^{-}X)}{N(\overline{\mathbf{B}^{0}} \to \mu^{+}X) + N(\overline{\mathbf{B}^{0}} \to \mu^{-}X)} = C_{d}a^{d}{}_{sl} + C_{s}a^{s}{}_{sl}$$

$$More \ B^{0}{}_{d} \ produced, \ but \ most \ decay \ before \ mixing: \ C_{d} \approx C_{s} \approx 0.5$$

Challenge: separate signal (semileptonic *mixed* decays of B mesons) from the many other muon-producing backgrounds.

To suppress such backgrounds, require second muon of the same charge:

$$A^{b}_{sl} = \frac{\mathrm{N}(\mathrm{b}\overline{\mathrm{b}} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{+}) - \mathrm{N}(\mathrm{b}\overline{\mathrm{b}} \to \boldsymbol{\mu}^{-}\boldsymbol{\mu}^{-})}{\mathrm{N}(\mathrm{b}\overline{\mathrm{b}} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{+}) + \mathrm{N}(\mathrm{b}\overline{\mathrm{b}} \to \boldsymbol{\mu}^{-}\boldsymbol{\mu}^{-})} = a^{b}_{sl} \qquad (0.028 \pm 0.006)\% \text{ in S.M.}$$

We therefore have two ways to extract $a^{b}{}_{sl}$, and take advantage of the correlated backgrounds by combining the two measurements.

LISHEP Conference 5th July 2011

7

Measure 'raw' asymmetries by counting single muons (n[±]) and dimuon events (N^{±±});
 Express in terms of a^b_{sl}:

$$a \equiv \frac{n^{+} - n^{-}}{n^{+} + n^{-}} = \sum_{i=0}^{5} f_{\mu}^{i} \left\{ f_{s}^{i} \left(c_{b} a_{sl}^{b} + \delta_{i} \right) + f_{k}^{i} a_{k}^{i} + f_{\pi}^{i} a_{\pi}^{i} + f_{p}^{i} a_{p}^{i} \right\}$$
Raw asymmetry
(event counting)
$$Asymmetry \\ from heavy- \\ flavor decays \\ over bins of muon p_{T}$$

$$Asymmetry \\ flavor decays \\ flavor decay$$

Measure 'raw' asymmetries by counting single muons (n[±]) and dimuon events (N^{±±});
 Express in terms of a^b_{sl}:

$$a \equiv \frac{n^{+} - n^{-}}{n^{+} + n^{-}} = \sum_{i=0}^{5} f_{\mu}^{i} \{ f_{s}^{i} (c_{b} a^{b}_{sl} + \delta_{i}) + f_{k}^{i} a_{k}^{i} + f_{\pi}^{i} a_{\pi}^{i} + f_{p}^{i} a_{p}^{i} \}$$

Asymmetries from backgrounds and detector effects

Residual muon reconstruction asymmetries (almost entirely cancelled by magnet polarity reversal)

Note that ye detector effects

Kaon DIF and punch-through

...proton punch-through

Measure 'raw' asymmetries by counting single muons (n[±]) and dimuon events (N^{±±});
 Express in terms of a^b_{sl}:

Remaining fraction of muons after kaon, pion, proton components taken into account: i.e. *"Heavy Flavor Fraction"*

10 LISHEP Conference 5th July 2011 Similar expression for dimuon case. Many BG quantities are the same, or highly correlated, e.g. presence of second muon doesn't change kaon asymmetry a_k^{i} .

3) Measure all quantities $f_{k,\pi,p}^{i}$, $a_{k,\pi,p}^{i}$, δ_{i} in data, with limited input from simulation;

3) Measure all quantities $f_{k,\pi,p}^{i}$, $a_{k,\pi,p}^{i}$, δ_{i} in data, with limited input from simulation;

Contribution from residual muon reconstruction asymmetry: $\sum_{i} (1 - f_{k}^{i} - f_{\pi}^{i} - f_{p}^{i}) \delta_{i} = -0.047 \pm 0.012 \%$

a or A) $(a - a_{bkg})$ $A - A_{bkg}$	× 10 ² _g) or _g)] × 10 ²	$+0.688 \pm 0.002$ -0.034 ± 0.042	$+0.126 \pm 0.041$ -0.276 ± 0.067	
a or A) $(a - a_{bkg})$ $A - A_{bkg}$	× 10 ² _g) or _g)] × 10 ²	$+0.688 \pm 0.002$ -0.034 ± 0.042	$+0.126 \pm 0.041$ -0.276 ± 0.067	
a or A) $(a - a_{bkg})$	× 10 ² g) or	$+0.688 \pm 0.002$ -0.034 ± 0.042	$+0.126 \pm 0.041$ -0.276 ± 0.067	
a or A)	$\times 10^{2}$	$+0.688 \pm 0.002$	$+0.126 \pm 0.041$	
	0			
$a_{\sf bkg}$ or	$A_{\sf bkg}) imes 10^2$	$+0.722 \pm 0.042$	$+0.402 \pm 0.053$	
$2 - F_{bkc}$	$\Delta] \times 10^2$	-0.047 ± 0.012	-0.212 ± 0.030	
$(1 - f_{hk})$	$(p_1, p_2) \land 10$ $(a, b) \delta$ or			
$f_{m}a_{m}$ or	$F_{\rm m}A_{\rm m}$ × 10 ²	-0.014 ± 0.022	-0.016 ± 0.019	
$f_{\pi}a_{\pi}$ or	$F_{\pi}A_{\pi}) \times 10^2$	$+0.007 \pm 0.027$	-0.002 ± 0.023	
$f_K a_K$ OI	$F_K A_K \times 10^2$	$+0.776 \pm 0.021$	$+0.633 \pm 0.031$	
Source		inclusive muon	like-sign dimuon	
	ource $f_K a_K$ or $f_\pi a_\pi$ or $f_p a_p$ or $1 - f_{bkg}$ $2 - F_{bkg}$ or	ource $f_K a_K$ or $F_K A_K$) × 10 ² $f_\pi a_\pi$ or $F_\pi A_\pi$) × 10 ² $f_p a_p$ or $F_p A_p$) × 10 ² $1 - f_{bkg}$) δ or $2 - F_{bkg}$) Δ] × 10 ² a_{bkg} or A_{bkg}) × 10 ²	ourceinclusive muon $f_K a_K$ or $F_K A_K$) × 102+0.776 ± 0.021 $f_\pi a_\pi$ or $F_\pi A_\pi$) × 102+0.007 ± 0.027 $f_p a_p$ or $F_p A_p$) × 102-0.014 ± 0.022 $1 - f_{bkg}$) δ or-0.047 ± 0.012 $2 - F_{bkg}$) Δ] × 102+0.722 ± 0.042	ourceinclusive muonlike-sign dimuon $f_K a_K$ or $F_K A_K$) × 102+0.776 ± 0.021+0.633 ± 0.031 $f_\pi a_\pi$ or $F_\pi A_\pi$) × 102+0.007 ± 0.027-0.002 ± 0.023 $f_p a_p$ or $F_p A_p$) × 102-0.014 ± 0.022-0.016 ± 0.019 $1 - f_{bkg})\delta$ or-0.047 ± 0.012-0.212 ± 0.030 $2 - F_{bkg})\Delta$] × 102+0.722 ± 0.042+0.402 ± 0.053

12

4) Account for dilution from charge-symmetric processes (i.e. determine coefficients c_b , C_b):

	Process	Weight
T_1	$b \to \mu^- X$	$w_1 \equiv 1.$
T_{1a}	$b ightarrow \mu^- X$ (nos)	$w_{1a} = (1 - \chi_0) w_1$
T_{1b}	$\overline{b} ightarrow b ightarrow \mu^- X$ (osc)	$w_{1b} = \chi_0 w_1$
T_2	$b \to c \to \mu^+ X$	$w_2 = 0.096 \pm 0.012$
T_{2a}	$b \rightarrow c \rightarrow \mu^+ X$ (nos)	$w_{2a} = (1 - \chi_0) w_2$
T_{2b}	$\overline{b} \to b \to c \to \mu^+ X \text{ (osc)}$	$w_{2b} = \chi_0 w_2$
T_3	$b \to c\bar{c}q$ with $c \to \mu^+ X$ or $\bar{c} \to \mu^- X$	$w_3 = 0.064 \pm 0.006$
T_4	$\eta, \omega, ho^0, \phi(1020), J/\psi, \psi' ightarrow \mu^+ \mu^-$	$w_4 = 0.021 \pm 0.002$
T_5	$b\overline{b}c\overline{c}$ with $c \to \mu^+ X$ or $\overline{c} \to \mu^- X$	$w_5 = 0.013 \pm 0.002$
T_6	$c\overline{c}$ with $c \to \mu^+ X$ or $\overline{c} \to \mu^- X$	$w_6 = 0.675 \pm 0.101$

Weights measured using simulation This analysis uses LEP value for χ_0 , following recent CDF update.

Results:

Inclusive muon sample dominated by chargesymmetric backgrounds (94%) $C_{b} = 0.474 \pm 0.032$

Dimuon sample has a large contribution (47%) from mixed B mesons (remember: around 50% each of B⁰_d and B⁰_s)

Results with 9fb⁻¹

Final asymmetry from both samples:

From inclusive muon sample: (2.041 x 10⁹ muons)

$$A_{sl}^{b} = [-1.04 \pm 1.30 \text{ (stat.)} \pm 2.31 \text{ (syst.)}] \%$$

From like-sign dimuon sample: (6.019 x 10⁶ muons)

$$A_{sl}^{b} = [-0.808 \pm 0.202 \text{ (stat.)} \pm 0.222 \text{ (syst.)}] \%$$

Now use **linear combination** of inclusive and dimuon asymmetries, $\mathbf{A'} = \mathbf{A} - \alpha \mathbf{a}$ with $\alpha = 0.89$ chosen to minimise total uncertainty on A^{b}_{sl} :

 $A_{sl}^{b} = [-0.787 \pm 0.172 \text{ (stat.)} \pm 0.093 \text{ (syst.)}] \%$

This result differs from the SM prediction by 3.9σ

Systematic uncertainty reduces significantly due to extra information in (background dominated) inclusive muon sample

arXiv:1106.6308 (submitted to PRD)

Cross-Checks

Measured inclusive muon asymmetry a is dominated by background: should match a_{bkg}:

Dimuon asymmetry versus $M(\mu\mu)$ – inconsistent with SM, but consistent with measured A^{b}_{sl} .

Measurement also repeated with many different requirements to enhance/suppress backgrounds. Final A^b_{sl} consistent in all samples (Total $\chi^2 = 16$ for 18 different tests)

Dependence on Impact Parameter

Muon impact parameter strongly influences:

By dividing into two samples corresponding to $IP(\mu) < 120\mu m$ and $IP(\mu) > 120\mu m$, we can:

- 1) Confirm stable measurement in background enhanced and suppressed samples;
- 2) Test for larger asymmetry from $B^0_{\ d}$ or $B^0_{\ s}$ mesons:

for IP(μ) < 120 μ m: IP(μ) > 120 μ m: $A^{b}{}_{sl} = (0.397 \pm 0.053)a^{d}{}_{sl} + (0.603 \pm 0.053)a^{s}{}_{sl}$ $A^{b}{}_{sl} = (0.728 \pm 0.030)a^{d}{}_{sl} + (0.272 \pm 0.030)a^{s}{}_{sl}$

Dependence on Impact Parameter

Quantity	<i>IP</i> >120	<i>IP</i> <120
$f_K imes 10^2$	5.19 ± 0.37	17.64 ± 0.27
$f_\pi imes 10^2$	5.65 ± 0.40	34.72 ± 1.86
$f_p imes 10^2$	0.05 ± 0.03	0.45 ± 0.20
$\dot{F}_K imes 10^2$	4.48 ± 4.05	21.49 ± 0.62
$F_\pi imes 10^2$	4.43 ± 3.95	40.47 ± 2.26
$F_p imes 10^2$	0.03 ± 0.05	0.59 ± 0.23
$f_S imes 10^2$	89.11 ± 0.88	47.18 ± 2.03 <
$F_{ m bkg} imes 10^2$	8.94 ± 8.26	62.56 ± 3.07
$F_{SS} \times 10^2$	91.79 ± 7.65	53.66 ± 2.68 🥢
$a \times 10^2$	-0.014 ± 0.005	$+0.835 \pm 0.002$
$a_{ m bkg} imes 10^2$	$+0.027 \pm 0.023$	$+0.864 \pm 0.049$
$A \times 10^2$	-0.529 ± 0.120	$+0.555 \pm 0.060$
$A_{\rm bkg} imes 10^2$	-0.127 ± 0.093	$+0.829 \pm 0.077$

Kaon and pion fractions much lower in IP>120µm sample

HF fraction increases from ~50% \rightarrow ~90%

Even inclusive muon asymmetry significantly different from BG expectation for IP>120 μ m

Measured asymmetry larger in B⁰_d suppressed sample, but too early to make strong conclusions.

$IP < 120 \mu m$	1μ	-1.654	2.774	4.962
	2μ	-1.175	0.439	0.590
	comb.	-1.138	0.366	0.323
$IP > 120 \mu m$	1μ	-0.422	0.240	0.121
	2μ	-0.818	0.342	0.067
	comb.	-0.579	0.210	0.094

Change of Topic: CPV in Interference

In B_{α}^{0} decays to a common final state (e.g. $B_{s} \rightarrow J/\psi\phi$), there is a relative phase between the B mixing amplitude ϕ_{q} and subsequent decay amplitudes:

 $\varphi_s^{J/\psi\phi} = -2\beta s = 2*arg[V_{tb}V_{ts}^*/V_{cb}V_{cs}^*] = -0.04$ in the SM

New physics effects would shift φ_s and $\varphi_s^{J/\psi\varphi}$ by the same amount!

Small, $(1\sigma \oplus 1\sigma)$ but tantalizing suggestion of SM disagreement

LISHEP Conference 18 5th July 2011

Both CDF and D0 actively working on updates to their measurements in the $B_s \rightarrow J/\psi \phi$ channel.

Interesting channel for several reasons

Final state is exclusively CP-odd, so:

1) No need for complicated angular analysis to disentangle CP states (as in $J/\psi\phi$) – can potentially make **independent measurement of** β_s .

2) Can measure lifetime of CP-odd eigenstate:

In SM this corresponds to 'heavy' mass eigenstate;

 $\tau_s^{\ H} = (1.630 \pm 0.030) \text{ ps}$ $\tau_s^{\ L} = (1.427 \pm 0.023) \text{ ps}$

Enhancement of mixing phase ϕ_s causes CP and mass-eigenstates to diverge, therefore lifetime can indirectly constrain CPV.

Also, if decay $f_0(980) \rightarrow KK$ is present, it can **interfere with** $B_s^0 \rightarrow J/\psi \phi$ **process**; such 'S-wave' contributions need to be understood.

CDF and D0: Measurement of branching fraction of $B_s^0 \rightarrow J/\psi f_0$ decay relative to the $B_s^0 \rightarrow J/\psi \phi$ decay.

CDF: Measurement of the B_s^0 lifetime in the channel $B_s^0 \rightarrow J/\psi f_0$ *arXiv:1106.3682*

 $B^0 \rightarrow J/\psi K^{*0}$

 $B^0 \rightarrow J/\psi \pi^+ \pi^-$

 $B^0_s \rightarrow J/\psi \ K^+K^-$

Other $B^0_s \rightarrow J/\psi\phi$

Other B⁰

CDF Run 2 Simulation

$Br[B_{s}^{0} \rightarrow J/\psi f_{0}(980)]$

Neural Net event selection:

- Only use variables which are well-modelled by simulation (used to measure efficiency);
- Train on $J/\psi f_0$ sample, and then use same NN for $J/\psi \phi$ sample.

Model physics backgrounds using input from simulation

U.M.L. fits to mass distributions to extract signal size

Relative reconstruction efficiency extracted from simulation:

$$\varepsilon_{rel} = \frac{\varepsilon(B_{s}^{0} \rightarrow J/\psi\phi)}{\varepsilon(B_{s}^{0} \rightarrow J/\psi f_{0})}$$
$$= 1.178 \pm 0.040$$

Probability per 5 MeV/c² 0.032 0.032 0.032 0.032 0.032 0.032

0.010

0.005

 $Br[B_s^0 \rightarrow J/\psi f_0(980)]$

First Direct Measurement of CP-odd B⁰, Lifetime

Different NN selection:

- Remove lifetime-dependent variables;
- Add extra variables MC/data matching not needed;
- $\tau = 1.70^{+0.12}_{-0.11} \text{ (stat.)} \pm 0.03 \text{ (cm} \text{ (stat.)} \pm 0.03 \text{ (cm} \text{ (stat.)}) = 0.03 \text{ (cm} \text{ (stat.)})$

22

5th July 2011

Exponential \otimes Gaussian (with candidate-specific width)

Dominated by combinatorial BG

Thorough study of systematics/biases, but statistically limited.

 $M(J/\psi\pi^+\pi^-)$ [GeV/c²]

Part II: CPV and Rare-Decays to Hadronic States

 $D^* \rightarrow \pi D^0$ (CDF)

Charmless Decays B→h+h'-

B decays into charmless pseudoscalar mesons provide important constraints on SM

Rare decays through $\mathbf{b} \rightarrow \mathbf{u}$ transition:

- Sensitive to CKM angle $\gamma = \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$
- Constrain strength of penguin-annihilation amplitudes
- Sensitive to NP contributions -

 $\mathbf{B}^{0}_{s} \rightarrow \mathbf{K}^{+}\mathbf{K}^{-}, \mathbf{B}^{0}_{s} \rightarrow \mathbf{K}^{-}\pi^{+}$ already observed (CDF, 1fb⁻¹)

 $\mathbf{B}^{0}_{s} \rightarrow \pi^{-}\pi^{+}$ and $\mathbf{B}^{0}_{d} \rightarrow \mathbf{K}^{+}\mathbf{K}^{-}$ remain to be seen.

Neither initial-state quark remains – only possible via annihilation

BR measurements important tests of hadronic parameters

CDF Public Note 10498 $(6fb^{-1})$

Search for $B^0_{s} \rightarrow \pi^-\pi^+$ and $B^0_{d} \rightarrow K^+K^-$

Candidates per 0.02

 10^{3}

0.0

• Multivariate likelihood fit to extract sample composition using kinematic and PID variables:

 $m_{\pi\pi}^2$, $\beta = (p^+ - p^-)/(p^+ + p^-)$, $p_{tot} = p^1 + p^2$; dE/dx

First evidence for $B_s^0 \rightarrow \pi^-\pi^+$ (3.7 σ); No significant signal for $B_d^0 \rightarrow K^+K^-$ (2.0 σ). Use reference process $B^0 \rightarrow K^+\pi^-$ to determine BR:

25 LISHEP Conference 5th July 2011

CP Asymmetries in $B \rightarrow Dh$ Decays

Complementary probe of CKM angle γ in *tree-level* processes. Use "ADS" technique^[1]:

Two decays of interest (+ c.c):

 $B^{-} \rightarrow K^{-} D^{0} (\rightarrow K^{-} \pi^{+})_{CF}$ $B^{-} \rightarrow K^{-} D^{0} (\rightarrow K^{+} \pi^{-})_{DCS}$

Cabibbo/color favored (CF)

Cabibbo/color suppressed (DCS)

Also search for equivalent decays $B^{-} \rightarrow \pi^{-} D^{0}$

BR relations sensitive to γ :

$$R_{ADS} = \frac{\mathcal{BR}(B^{-} \to [K^{+}\pi^{-}]_{D^{0}}K^{-}) + \mathcal{BR}(B^{+} \to [K^{-}\pi^{+}]_{D^{0}}K^{+})}{\mathcal{BR}(B^{-} \to [K^{-}\pi^{+}]_{D^{0}}K^{-}) + \mathcal{BR}(B^{+} \to [K^{+}\pi^{-}]_{D^{0}}K^{+})} = \mathbf{A} + \mathbf{Bcos}(\gamma)$$

$$A_{ADS} = \frac{\mathcal{BR}(B^{-} \to [K^{+}\pi^{-}]_{D^{0}}K^{-}) - \mathcal{BR}(B^{+} \to [K^{-}\pi^{+}]_{D^{0}}K^{+})}{\mathcal{BR}(B^{-} \to [K^{+}\pi^{-}]_{D^{0}}K^{-}) + \mathcal{BR}(B^{+} \to [K^{-}\pi^{+}]_{D^{0}}K^{+})} = \mathbf{Csin}(\gamma) / \mathbf{R}_{ADS}$$

Powerful technique, but very rare process.

Take advantage of displaced-track trigger, fine mass resolution, PID to reconstruct and separate signal from BG.

[1]: Atwood, Dunietz, Soni (PRL78, 3257)

LISHEP Conference 26 5th July 2011

CP Asymmetries in **B**→**Dh** Decays

Optimize cuts on CF process, and then apply to search for DCS channel;

UML Fit over 3-track invariant mass and PID variable "kaonness":

1) Use CF sample to constrain shapes of signal and backgrounds.

2) Simultaneous fit of CF and DCS samples to reconstruct pion and kaon channels;

Use simulation to model influence of different flight-lengths of K^+ vs K^- (2% effect).

 $R_{ADS}(\pi) = [2.8 \pm 0.7 \pm 0.4] \times 10^{-3}$ $R_{ADS}(K) = [22.1 \pm 8.6 \pm 2.6] \times 10^{-3}$ $A_{ADS}(\pi) = 0.15 \pm 0.25 \pm 0.01$ $A_{ADS}(K) = -0.82 \pm 0.44 \pm 0.09$

27 LISHEP Conference 5th July 2011 >5σ significance for DCS signals, when combining kaon and pion channels.

CP Asymmetries in **B**→**Dh** Decays

 $R_{ADS}(\pi) = [2.8 \pm 0.7 \pm 0.4] \times 10^{-3}$ $R_{ADS}(K) = [22.1 \pm 8.6 \pm 2.6] \times 10^{-3}$ $A_{ADS}(\pi) = 0.15 \pm 0.25 \pm 0.01$ $A_{ADS}(K) = -0.82 \pm 0.44 \pm 0.09$

First such measurement in hadron collisions

Consistent with B factory measurements.

Can combine with other inputs to improve measurement of γ .

LISHEP Conference 5th July 2011

Triple-Product Asymmetries in $B^0_s \rightarrow \phi \phi$

Penguin-mediated process to two vector mesons.

Similar to $J/\psi\phi$ channel – mix of CP-odd and CP-even states, but... sample too small for full angular analysis.

Earlier CDF measured transverse polarized fraction: $f_T = (65.2 \pm 4.1 \pm 2.1)\%$ disagrees with naïve SM expectation.

Use **Triple-product asymmetries** (A_{TP}) to search for CPV – these are small in the SM, enhanced by NP. No need to tag B_s^0 flavor, or full angular analysis.

A_{TP} accessed via angular quantities:

29 LISHEP Conference 5th July 2011

Triple-Product Asymmetries in B⁰_s $\rightarrow \phi \phi$

Simultaneous fit of $M(\varphi \varphi)$ for positive and negative signs of *u* (and *v*);

Include constraint $(N^+ + N^-) = N_{tot};$

Use combinatorial BG to constrain background asymmetries.

Asymmetries defined in usual way:

$$A_u = -0.007 \pm 0.064 \pm 0.018$$
$$A_v = -0.120 \pm 0.064 \pm 0.016$$

First constraints to TP asymmetries in this channel.

CVP in Charm Decays $D^0 \rightarrow \pi^+\pi^-$, $D^0 \rightarrow K^+K^-$

CDF measure time-integrated asymmetries in Cabibbo suppressed mode:

$$A_{CP}(D^0 \rightarrow h^+ h^-) = \frac{\Gamma(D^0 \rightarrow h^+ h^-) - \Gamma(D^0 \rightarrow h^+ h^-)}{\Gamma(D^0 \rightarrow h^+ h^-) + \Gamma(\overline{D}^0 \rightarrow h^+ h^-)}$$

Contributions from both direct and mixing-induced CPV

CDF Public Note 10296 (5.9fb⁻¹)

Reconstruct parent $D^{*\pm}$ to tag initial D^0 flavor (i.e. look for soft pion π_s from decay)

Asymmetry dominated by detector effects of a few percent (kaon decay, asymmetric tracker)

Use reference channels with huge statistics to constrain these contributions $(D^0 \rightarrow K\pi)$:

(with D* tag) $N(D^0 \rightarrow \pi \pi) = 215,000$ signal $N(D^0 \rightarrow KK) = 476,000$ $N(D^0 \rightarrow \pi K) = \sim 5M$ reference $N(D^0 \rightarrow \pi K) = \sim 29M$ (no D* tag)

LISHEP Conference 31 5th July 2011

CVP in Charm Decays $D^0 \rightarrow \pi^+\pi^-$, $D^0 \rightarrow K^+K^-$

2.02

2.020

CDF Run II Preliminary $\int L dt = 5.94 \text{ fb}^{-1}$

 $N(D^{\star^{-}} \rightarrow \overline{D}^{0} \pi_{s} \rightarrow [\pi^{-} \pi^{+}] \pi_{s}) = 110447 \pm 368$

 $\gamma^2/ndf = 303.23/306$

data

Binned fit to $D^0\pi_s$ mass distributions, separately for π^+_{s} and π^-_{s}

Fit results give raw asymmetries, e.g.

 $A_{CP}(K\pi)^{notag} = (-0.83 \pm 0.03) \%$

Combine to cancel detector effects, yielding:

 $A_{CP}(D^0 \rightarrow \pi^+\pi^-) = (+0.22 \pm 0.24 \pm 0.11) \%$ $A_{CP}(D^0 \rightarrow K^+K^-) = (-0.24 \pm 0.22 \pm 0.10) \%$

Consistent with SM predictions (and with no CPV).

Transitions between first 2 generations have real CKM parameters – any asymmetry must be from NP.

Relies on assumption that pp strong interactions are charge symmetric.

 D^0

8000

6000

CVP in Charm Decays $D^0 \rightarrow \pi^+\pi^-$, $D^0 \rightarrow K^+K^-$

CDF Run II Preliminary $\int L dt = 5.94$ 10

Conclusions

• CPV is a hot topic at hadron colliders!

• We continue to **challenge the Standard Model**, probing quantities which are sensitive to New Physics.

• Innovative techniques in constant development: event selection, data-driven methods, "ADS" and Triple-product asymmetries, correlated backgrounds...

• **Dimuon asymmetry** a tantalizing possibility for BSM physics

- D0 already planning next update with more use of IP information \mathbf{O}
- Need independent confirmation from other experiments. 0
- **Tevatron legacy** will strongly influence the LHC experiments, it's *almost* time to pass the baton, but not yet.

Extra Material

Dimuon Asymmetry: Comparison with Previous Result

Previous D0 measurement PRD 82, 032001 (2010) (6.1fb⁻¹)

First 6.1 fb⁻¹, new technique:

 $A^{b}_{sl} = [-0.957 \pm 0.251 \text{ (stat.)} \pm 0.146 \text{ (syst.)}] \%$ 3.20

 $A^{b}_{\ sl} = [\ \text{-0.891} \pm 0.204 \ (\text{stat.}) \pm 0.128 \ (\text{syst.}) \] \ \% \\ \begin{array}{c} \textbf{3.6\sigma} \end{array}$

Final 2.9fb⁻¹, new technique:

 $A^{b}_{sl} = [-0.600 \pm 0.335 \text{ (stat.)} \pm 0.188 \text{ (syst.)}] \%$ 1.60

So what's new?

- Event selection optimized:
 - Looser minimum $|p_z|$ cut (6.4 \rightarrow 5.4 GeV) based on new study of detector thickness;
 - Tighter match required between muon track and central track reduces BG contribution from D.I.F.;
- New method to extract ratio of kaon fractions in two samples $\mathbf{R}_{\mathbf{k}} = \mathbf{F}_{\mathbf{k}}/\mathbf{f}_{\mathbf{k}}$: eliminates dependence on mass resolution, and better quantifies correlations.
- \circ Second, independent channel used to measure $\mathbf{R}_{\mathbf{k}}$: consistent results found.

Integrated Mixing Probability χ_0

$$\chi_0 = \frac{\Gamma(B^0 \to \overline{B}{}^0 \to l^+ X)}{\Gamma(B \to l^{\pm} X)}$$

Important input for dimuon asymmetry interpretation;

Fit IP distributions of dimuons (+-, ++, --) to extract heavy-flavor fraction in muon sample;

Mixing probability directly related to raw asymmetry, R:

$$R = \frac{N(b\overline{b} \to \mu^{\pm} \mu^{\pm})}{N(b\overline{b} \to \mu^{\pm} \mu^{\mp})} \underbrace{ \begin{array}{c} \leftarrow \\ \text{Like-sign} \\ \text{dimuons} \end{array}}_{\text{Opposite-sign}}$$

37 LISHEP Conference 5th July 2011

$$\begin{split} R &= 0.467 \pm 0.008 \pm 0.007 \\ \Rightarrow \chi &= 0.126 \ \pm 0.008 \end{split}$$

(*LEP*: $\chi = 0.1259 \pm 0.0042$)

CDF Public Note 10335 (1.44fb⁻¹)

95% CL Limits on $\mathcal{B}(B_s \rightarrow \mu\mu)$

Rare decay very sensitive to BSM enhancements;

Significant analysis improvements over the Tevatron era:

- Multivariate analysis;
- Background understanding;

Still limited by very low expected number of events.

CDF: World's best limits (3.7fb⁻¹)

 $\mathcal{B}(B^0_s \rightarrow \mu\mu) < 4.3 \ge 10^{-8} @ 95\%$

D0: (6.1fb⁻¹)

 $\mathcal{B}(B^0_{s} \rightarrow \mu\mu) < 5.1 \ge 10^{-8} @ 95\%$

New results on their way...