B Physics expectations at LHCb

Leandro de Paula

on behalf of LHCb Collaboration LAPE - IF - UFRJ

leandro@if.ufrj.br

Physics Motivation	LHCb	\mathbf{B}_{s} Mixing	CKM Angles	Rare Decay	Conclusions

- New Physics is expected to play a role at LHC, but difficult to be characterized
- SM: CP violation is described by a complex phase in the unitarity CKM matrix. Unitary Triangles

Physics Motivation	LHCb	B _s Mixing	CKM Angles	Rare Decay	Conclusions

- New Physics is expected to play a role at LHC, but difficult to be characterized
- SM: CP violation is described by a complex phase in the unitarity CKM matrix. Unitary Triangles

Physics Motivation	LHCb	B _s Mixing	CKM Angles	Rare Decay	Conclusions

- New Physics is expected to play a role at LHC, but difficult to be characterized
- SM: CP violation is described by a complex phase in the unitarity CKM matrix. Unitary Triangles

Physics Motivation	LHCb	B _s Mixing	CKM Angles	Rare Decay	Conclusions

- New Physics is expected to play a role at LHC, but difficult to be characterized
- SM: CP violation is described by a complex phase in the unitarity CKM matrix. Unitary Triangles

Physics Motivation	LHCb	B _s Mixing	CKM Angles	Rare Decay	Conclusions

- New Physics is expected to play a role at LHC, but difficult to be characterized
- SM: CP violation is described by a complex phase in the unitarity CKM matrix. Unitary Triangles

Physics Motivation	LHCb	\mathbf{B}_{s} Mixing	CKM Angles	Rare Decay	Conclusions

- New Physics is expected to play a role at LHC, but difficult to be characterized
- SM: CP violation is described by a complex phase in the unitarity CKM matrix. Unitary Triangles
- Belle and Babar

2005

Physics motivation	LIIGD	B _s withing	CKM Angles	Rare Decay	Conclusions
CP Violation	∖atl⊦	IC			

- Standard Model can not explain the baryon asymmetry of the Universe \Rightarrow CP violation is a probe to new Physics.
- LHCb is a precision experiment designed to study the b sector: CP violation and rare decays Elie Aslanides' talk

Physics Motivation	LHCb	\mathbf{B}_{s} Mixing	CKM Angles	Rare Decay	Conclusions

CP Violation at LHC

- Standard Model can not explain the baryon asymmetry of the Universe ⇒ CP violation is a probe to new Physics.
- LHCb is a precision experiment designed to study the b sector: CP violation and rare decays Elie Aslanides' talk
- LHCb precision \Rightarrow 2 Unitary Triangles

Physics Motivation	LHCb	\mathbf{B}_{s} Mixing	CKM Angles	Rare Decay	Conclusions

CP Violation at LHC

- Standard Model can not explain the baryon asymmetry of the Universe ⇒ CP violation is a probe to new Physics.
- LHCb is a precision experiment designed to study the b sector: CP violation and rare decays Elie Aslanides' talk
- LHCb precision \Rightarrow 2 Unitary Triangles
- LHCb will over constrain the Triangles

Physics Motivation	LHCb	\mathbf{B}_{s} Mixing	CKM Angles	Rare Decay	Conclusions
LHCb Phy	sics Pı	rogram			

- Δm_s , ϕ_s and $\Delta \Gamma_s$: $B_s \rightarrow D_s \pi$, $J/\Psi \Phi$, $J/\Psi \eta$ and $\eta_c \Phi$ • α : $B_d \rightarrow \pi^0 \pi^- \pi^+$
- β : $B_d \rightarrow J/\Psi K_S$ and $B_s \rightarrow \Phi K_S$ (penguin)
 - CP $_{asym}(t)\text{: }B_s \to D_s^\pm K^\mp$, K^+ K^- and B $_d \to \pi^+\pi^-$
 - Decay Rates: $B^0_d \rightarrow D^0(K^-\pi^+; K^+\pi^-; K^+K^-)K^{*0}$ $B^0_d \rightarrow D^0(K^-\pi^+; K^+\pi^-; K^+K^-)K^{*0}$
 - Dalitz analysis: $\tilde{B}^{-,0}_{,d} \rightarrow D^0(K_s\pi^-\pi^+,K_sK^-K^+)K^{-,*0}$
- Rare Decays

• γ

- Penguins: Radiative: $B_d \rightarrow (K^*, \omega)\gamma$, $B_s \rightarrow \Phi\gamma$; Electroweak $B_d \rightarrow K^*\mu^-\mu^+$;
 - Gluonic: $B_s \rightarrow \Phi \Phi$ and $B_d \rightarrow \Phi K_s$
- Box diagram: $B_s \rightarrow \mu^- \mu^+$
- B_s, b-baryon Physics, c Physics ...

• γ

LHCb Physics Program (in 15 minutes!)

- $\Delta m_s, \ \phi_s \ \text{and} \ \Delta \Gamma_s$: $B_s \rightarrow D_s \pi, \ J/\Psi \Phi, \ J/\Psi \eta \ \text{and} \ \eta_c \Phi$
- $\alpha: \mathbf{B}_{d} \to \pi^{0}\pi^{-}\pi^{+}$
- β : $B_d \rightarrow J/\Psi K_S$ and $B_s \rightarrow \Phi K_S$ (penguin)
 - $\bullet~{\sf CP}_{asym}(t){:}~{\sf B}_s\to D_s^\pm{\rm K}^\mp$, ${\sf K}^+~{\sf K}^-$ and ${\sf B}_d\to\pi^+\pi^-$
 - Decay Rates: $B^0_d \rightarrow D^0(K^-\pi^+; K^+\pi^-; K^+K^-)K^{*0}$ $B^0_d \rightarrow D^0(K^-\pi^+; K^+\pi^-; K^+K^-)K^{*0}$
 - Dalitz analysis: $\overset{a}{B}_{,d}^{,0} \rightarrow D^{0}(K_{s}\pi^{-}\pi^{+},K_{s}K^{-}K^{+})K^{-,*0}$
- Rare Decays
 - Penguins: Radiative: $B_d \rightarrow (K^*, \omega)\gamma$, $B_s \rightarrow \Phi\gamma$; Electroweak $B_d \rightarrow K^*\mu^-\mu^+$;
 - Gluonic: $B_s \to \Phi \Phi$ and $B_d \to \Phi K_s$
 - Box diagram: $B_s \rightarrow \mu^- \mu^+$
- B_s, b-baryon Physics, c Physics ...

MC Simulation: 40M $b\overline{b}$ and 70M minimun bias events

How to know the b-flavor at t=0?

- detecting the flavor of the other B
 opposite side: e, μ, K, B_{charge}
- using K[±] for B_s or π^{\pm} for B_s same side: π/K

・ロット (雪) (日) (日)

MC Simulation: 40M $b\overline{b}$ and 70M minimun bias events

How to know the b-flavor at t=0?

- detecting the flavor of the other B
 opposite side: e, μ, K, B_{charge}
- using K^{\pm} for B_s or π^{\pm} for B_s same side: π/K
- Tagging power characterized by $\epsilon(1 2\omega)^2$, where ϵ is the efficiency and ω the mistag

・ロット (雪) (日) (日)

 ϵ

\mathbf{B}_{s} Oscillation Frequency: Δm_{s}

$\mathbf{B}_{s} \rightarrow \mathbf{D}_{s}\pi^{+}$

- 2 fb⁻¹ (one year of data taking)
- can observe $> 5\sigma$ oscillation signal if $\Delta m_s < 68 \text{ ps}^{-1}$
- proper time resolution \approx 35 fs

\mathbf{B}_{s} Oscillation Frequency: Δm_{s}

Needed for B_s time dependent CP asymmetries

$\mathbf{B}_{s} \rightarrow \mathbf{D}_{s}\pi^{+}$

- 2 fb⁻¹ (one year of data taking)
- can observe $> 5\sigma$ oscillation signal if $\Delta m_s < 68 \text{ ps}^{-1}$
- proper time resolution \approx 35 fs

LHCb: if Δm_s = 20 ps⁻¹ \Rightarrow $\sigma_{LHCb}(\Delta m_s)$ = 0.01 ps⁻¹

- CP asymmetry from interference: $B_s \rightarrow J/\Psi \Phi$ and $B_s \rightarrow \overline{B}_s \rightarrow J/\Psi \Phi$. New Physics?
- B_s counter part of the golden mode $B_d \rightarrow J/\Psi \ K_S \ (\beta)$

イロト イポト イヨト イヨト

- CP asymmetry from interference: $B_s \to J/\Psi \Phi$ and $B_s \to \overline{B}_s \to J/\Psi \Phi.$
- B_s counter part of the golden mode $B_d \rightarrow J/\Psi \ K_S \ (\beta)$
- Final state is a mixture of CP-even and odd contributions
 → angular analysis of decay products required
- Also from pure CP eigenstates: $J/\Psi\eta(\gamma\gamma, \pi^+\pi^-\pi^0), \eta_c\Phi \Rightarrow$ no need of angular analysis, but lower statistics
- Standard Model: $\Phi_{\rm s} = -2\chi$ = -0.036 \pm 0.003 (CKM fitter)

 Selection based in a multivariable analysis

 \mathbf{x}^2

 Dalitz plot analysis - Quinn Snyder method

- 14 kevents/year with B/S = 0.8
- 11-parameter likelihood fits in time-dependent Dalitz space

 Selection based in a multivariable analysis

₹`

 Dalitz plot analysis - Quinn Snyder method

- 14 kevents/year with B/S = 0.8
- 11-parameter likelihc fits in time-depender Dalitz space

 $lpha_{
m fit}$ = (102 \pm 9)° Toy MC - 2 fb⁻¹ $\sigma(lpha)$ = 10°

β from $\textbf{B}_{d} \rightarrow \textbf{J/} \Psi ~\textbf{K}_{S}$

→ Well measured by Belle and Babar **X** $(\sin 2\beta)_{\text{meas}} = 0.687 \pm 0.032$ in agreement with fitted value **X** $(\sin 2\beta)_{\text{fit}} = 0.738 \pm 0.023$

To be measured as a proof of principle

- → Well measured by Belle and Babar **X** $(\sin 2\beta)_{meas} = 0.687 \pm 0.032$ in agreement with fitted value **X** $(\sin 2\beta)_{fit} = 0.738 \pm 0.023$ → 2 fb⁻¹ LHCb
 - $\bullet~$ control channel: $B_d \rightarrow J/\Psi~K^*$
 - 216 kevents
 - σ(sin 2β) = 0.022

(日)

To be compared with values obtained from $b \rightarrow s$ penguin

γ from $\mathbf{B}_{d} \rightarrow \mathbf{D}^{0} \ \mathbf{K}^{*0}$ - Gronau-London-Wyler Method

6 self tagging decays

$$\begin{array}{l} \mathsf{A}_{1} \equiv \mathsf{A}(\mathsf{B}_{d} \rightarrow \overline{\mathsf{D}}^{0} \; [\mathsf{K}^{+}\pi^{-}] \; \mathsf{K}^{*}[\mathsf{K}^{+}\pi^{-}]) = \overline{\mathsf{A}}_{1} \\ \mathsf{A}_{2} \equiv \mathsf{A}(\mathsf{B}_{d} \rightarrow \mathsf{D}^{0} \; [\mathsf{K}^{-}\pi^{+}] \; \mathsf{K}^{*}[\mathsf{K}^{+}\pi^{-}]) = \overline{\mathsf{A}}_{2} e^{2i\gamma} \\ \mathsf{A}_{3} \equiv \mathsf{A}(\mathsf{B}_{d} \rightarrow \mathsf{D}_{CP}[\mathsf{K}\mathsf{K},\pi\pi] \; \mathsf{K}^{*}[\mathsf{K}^{+}\pi^{-}]) \\ \mathsf{A}_{4} \equiv \mathsf{A}(\overline{\mathsf{B}}_{d} \rightarrow \mathsf{D}_{CP}[\mathsf{K}\mathsf{K},\pi\pi] \; \overline{\mathsf{K}}^{*}[\mathsf{K}^{-}\pi^{+}]) \end{array}$$

- 6 measurements: A_i
- $A_3 \neq A_4 \rightarrow CPV$
- r_B known
- δ strong phase

A counting experiment: no tagging or proper time needed

γ from $\mathbf{B}_d \rightarrow \mathbf{D}^0 \; \mathbf{K}^{*0}$ - Gronau-London-Wyler Method

6 self tagging decays

$$\begin{array}{l} \mathsf{A}_{1}\equiv\mathsf{A}(\mathsf{B}_{d}\rightarrow\overline{\mathsf{D}}^{0}\;[\mathsf{K}^{+}\pi^{-}]\;\mathsf{K}^{*}[\mathsf{K}^{+}\pi^{-}])=\overline{\mathsf{A}}_{1}\\ \mathsf{A}_{2}\equiv\mathsf{A}(\mathsf{B}_{d}\rightarrow\mathsf{D}^{0}\;[\mathsf{K}^{-}\pi^{+}]\;\mathsf{K}^{*}[\mathsf{K}^{+}\pi^{-}])=\overline{\mathsf{A}}_{2}e^{2i\gamma}\\ \mathsf{A}_{3}\equiv\mathsf{A}(\mathsf{B}_{d}\rightarrow\mathsf{D}_{CP}[\mathsf{K}\mathsf{K},\pi\pi]\;\mathsf{K}^{*}[\mathsf{K}^{+}\pi^{-}])\\ \mathsf{A}_{4}\equiv\mathsf{A}(\overline{\mathsf{B}}_{d}\rightarrow\mathsf{D}_{CP}[\mathsf{K}\mathsf{K},\pi\pi]\;\overline{\mathsf{K}}^{*}[\mathsf{K}^{-}\pi^{+}]) \end{array}$$

- 6 measurements: A_i
- $A_3 \neq A_4 \rightarrow CPV$
- r_B known

 $\gamma_{\text{UTFIT}} = (71 \pm 16)^{\circ}$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

- δ strong phase
- 8 ambiguities!

Insensitive to new Physics

<u>гнср</u>

Rare Decay: $B_d \rightarrow K^{*0} \mu^- \mu^+$

Forward-backward asymmetry $A_{FB}(s)$ in the $\mu\mu$ rest-frame is a sensitive probe to New Physics

- Suppressed decay. $BR_{SM} \approx 10^{-6}$
- 2 fb⁻¹ \rightarrow 4.4 kevents with B/S < 2.6

イロト イポト イヨト イヨト

Forward-backward asymmetry $A_{FB}(s)$ in the $\mu\mu$ rest-frame is a sensitive probe to New Physics

- Suppressed decay. $BR_{SM} \approx 10^{-6}$
- 2 fb $^{-1} \rightarrow$ 4.4 kevents with B/S < 2.6
- 10 fb⁻¹:

zero of A_{FB} located to $\pm~0.53~GeV^2$

LHCb performance with $2fb^{-1}$ (1 year)

	Channel	Yield	B _{bb} /S		Precision
	$B_{s} \to D_{s} K$	5.4k	< 1		$\sigma(\gamma)pprox$ 14 $^{ m o}$
	$B_{\mathrm{d}} o \pi\pi$	26k	< 0.6	Fleicher	$\sigma(\gamma)pprox { m 6}^{ m o}$
	$B_d \to K \: K$	37k	0.3		
γ	$B_{\mathrm{d}} ightarrow D^{0}(K^{+}\pi^{-}) K^{*}$	0.5k	< 0.3		
	$B_{\mathrm{d}} o \overline{\mathrm{D}}^0$ (K $^-\pi^+$) K *	2.4k	< 2	GLW+D	$\sigma(\gamma)pprox {\sf 8}^{ m o}$
	$B_{\mathrm{d}} ightarrow \overline{\mathrm{D}}_{\mathrm{CP}}$ (KK, $\pi\pi$) K*	0.6k	< 0.3		
	$B^- o D^0(K^+\pi^-) \:K^-$	60k	0.5	ADS	$\sigma(\gamma)pprox 5^{ m o}$
	$B^- o \overline{\mathrm{D}}^0$ (K $^- \pi^+$) K $^-$	2k	0.5		
α	$B_{\mathrm{d}} ightarrow \pi^{\mathrm{o}} \pi^{+} \pi^{-}$	14k	0.8	Snyder Quinn	$\sigma(lpha)pprox$ 10 $^{ m o}$
β	$B_{\mathrm{d}} ightarrow J/\Psi \mathrm{K}_{\mathrm{S}}$	216k	0.8		$\sigma(\sin 2\beta) \approx 0.022$
	$B_s \rightarrow J/\Psi \Phi$	125k	0.3		
$\phi_{ m s}$	${\sf B}_{ m s} ightarrow {\sf J}/\Psi\eta$	12k	2.3		$\sigma(\phi_{ m s})pprox 2^{ m o}$
	$B_{\mathrm{s}} ightarrow \eta_{\mathrm{c}} \Phi$	3k	0.7		
Δm_s	$B_s \rightarrow D_s \pi$	80k	0.8		Δm_s up to 68 ps ⁻¹
	$B_{\mathrm{d}} ightarrow \mathrm{K}^{*} \mu \mu$	4.4k	< 2.6		Zero at \pm 0.53 GeV ²
rare decays	$B_{\mathrm{s}} ightarrow \mu \mu$	17	< 5.7		New Physics search
	$B_{\mathrm{d}} ightarrow \mathrm{K}^* \gamma$	35k	< 0.7		$\sigma({ m A}_{ m CP}^{ m dir})pprox$ 0.01

æ

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・

Physics Motivation	LHCb	B _s Mixing	CKM Angles	Rare Decay	Conclusions
Conclusion	IS				

- B_d, B_u, B_s and B_c systems studied at an unprecedented level of accuracy
- $\bullet \ \, \textbf{B}_s \overline{\textbf{B}}_s \text{ oscillations measured}$
- CP angles determined via channels with different sensitivity to NP
- Many measurements of rare decays and CP asymmetries performed
- b-baryon, c Physics ...

・ロット (雪) (日) (日)

Conclusions

- B_d, B_u, B_s and B_c systems studied at an unprecedented level of accuracy
- $B_s \overline{B}_s$ oscillations measured
- CP angles determined via channels with different sensitivity to NP
- Many measurements of rare decays and CP asymmetries performed
- b-baryon, c Physics ...

- $\Delta m_s < 68 \text{ ps}^{-1}$ (5σ)
- $\sigma(\Delta m_s) \approx 0.02 \text{ps}^{-1}$
- $\sigma(\phi_s) \approx 2^\circ$
- $\sigma(\alpha) \approx 10^{\circ}$
- $\sigma(\beta) \approx 0.9^{\circ}$
- $\sigma(\gamma) \approx 5^{\circ}$

LHCb offers an excellent opportunity to spot New Physics signals beyond Standard Model and will be ready in 2007

- B_d, B_u, B_s and B_c systems studied at an unprecedented level of accuracy
- $B_s \overline{B}_s$ oscillations measured
- CP angles determined via channels with different sensitivity to NP
- Many measurements of rare decays and CP asymmetries performed
- b-baryon, c Physics ...

 2 fb^{-1} (1 year)

- Δm_s < 68 ps⁻¹
 (5σ)
- $\sigma(\Delta m_s) \approx 0.02 p s^{-1}$
- $\sigma(\phi_{\rm s}) \approx 2^{\rm o}$
- $\sigma(\alpha) \approx 10^{\circ}$
- $\sigma(\beta) \approx 0.9^{\circ}$
- $\sigma(\gamma) \approx 5^{\circ}$

