

Precise Electroweak Tests at LHC

Fernando Marroquim Universidade Federal do Rio de Janeiro April 2006

- Introduction
- Precise W Mass Measurement
- Precise Top Mass Measurements
- Single Top Production
- Triple gauge boson couplings (TGC)
- Conclusions

Introduction

- First collisions at 14TeV center-of-mass energy will start in 2007.
- First 3 years with low luminosity: 2x10³³cm⁻²s⁻¹. 100 days of running corresponds to an integrated luminosity of 10fb⁻¹. Reduced pile-up.
- ATLAS is a general purpose experiment and has many physical goals. It is possible to realize various studies:

QCD processes Electroweak physics B-Physics Precision tests of the SM Higgs bosons Supersymmetry Beyond the SM Physics Heavy Ions Cosmic rays, etc .

Detailed description given by Neil Jackson (LISHEP 2006)

W Mass Measurement

Motivation:

SM m_w is related to other SM fundamental parameters

$$m_W^2 = \left(\frac{\pi \alpha}{G_F \sqrt{2}}\right) \frac{(1 + \Delta r)}{\sin^2 \theta_W}$$

where

 α is the structure constante G_F is the Fermi constante θ_W is the Weinberg angle $\Delta r(m_t^2, \log(m_h))$ is the radiative corrections Precise measurements of m_w and m_t will provide consistent check of m_h

There will be ca. 10^8 W \rightarrow e ν events

W Mass Measurement

Measurement:

- •Envisaged decay is $W \rightarrow I_{\nu}$, where $I=e,\mu$
- •It will corresponds to 3×10^8 events/ year (Low Lum.) •Selection single isolated charged lepton with $|\eta| < 2.4$
- •The W mass is extracted from the W transverse mass distribution

$$m_T^W = \sqrt{2 p_T^l p_T^v} \left(1 \cos \Delta \phi \right)$$

The W mass is obtained by fitting to samples generated using different input values of m_w

W Mass Measurement

Expected precision:

- •60 M Ws reconstructed /year Source
- •Statistics
- •W width
- •PDFs
- •Recoil Modelling
- Radiatvie Decays
- •W P_{T} spectrum
- Background undestanding
- Lepton identification
- •Lepton E-p scale
- •Lepton E-p resolution
- •Total
- •Total CMS+ATLAS

 Δm_w

- < 2 MeV
- < 7 MeV
- < 10 MeV
- < 5 MeV
- < 10 MeV
- < 5 MeV
- < 5 MeV
- < 5 MeV
- < 15 MeV
- < 5 MeV
- < 25 Mev
- < 15 MeV

Motivation:

- ${\rm \bullet m}_{\rm t}$ and ${\rm m}_{\rm w}$ precise measurements provide a consistent check of the SM Higgs mass, as mentioned before.
- Expected 8 10⁶ t t-bar events/year (Low luminosity)

Measurement

- •gg → t tbar 90% •qq → t tbar 10%
- $t \rightarrow b W$ (Dominant)

The t tbar events can be classified into three channels, depending on the W decay mode:

- Lepton plus jets (30%, considering electrons and muons only)
- Dilepton (5%)
- Full hadronic (44%)

Measurement(cont.) Let us consider the lepton + hadrons channel. It will provide a large and clean sample of ttbar events.

The main background for this channel:

Process	Cross-section
<u>Signal</u>	<u>205 pb</u>
<u>bbbar → I_v+jets</u>	2.2 10 ⁶ pb
<u>W+jets \rightarrow I_V+jets</u>	<u>7.8 10³ pb</u>
<u>Z+jets \rightarrow + + jets</u>	<u>1.2 10³ pb</u>
<u>WW \rightarrow I_V+jets</u>	<u>17.1 pb</u>
<u>WZ \rightarrow I_V+jets</u>	<u>3.4 pb</u>
$ZZ \rightarrow ^+ ^- + jets$	9.2 pb

And before selection s/b $\approx 10^{-4}$

```
Measurement(cont.)
Selection criteria:
```

```
Applied to Leptons(e and muons)

PT > 20 \text{ GeV/c and } |\eta| < 2.5

ET > 20 \text{ GeV/c}
```

Apllied to Jets: 4 jets with PT > 40 GeV/c , $|\eta| < 2.5$ Two of them tagged as b-jets $\Delta R = 0.4$ Jet definition

> S/B = 3064k events Statistical error 0.1 GeV/c²

Measurement(cont.)

Source ∆m	ı <mark>,(GeV)</mark>
Statistics	0.1
b fragmentation	0.1
ISRadiation	0.1
FSRadiation	1.0
Background	0.1
Light quark jet energy scale calibration	0.2
b-quark jet energy scale calibration	0.7

TOTAL

1.2

Probe the t-W-b Vertex

- •Directly measurement of the CKM matrix element V_{tb}
- •Source of high ploarized tops.
- **Discovery of New Physics, New Ws**

e.g. the LHM enhances the single op production.
Background: tt(833pb), Wbb(300nb, Wjj(18000nb)

•After selection: W-g(26800±1000), Backg(8720±1800)

LHC will be capable of extend the Fermilab measurements.

Triple gauge boson coupling •It provides a direct test of the w TGC Non-Abelian strucure of the SM. •New physics: deviations from SM

This sector of the SM is often described by 5 parameters: g₁^z, κ_γ, κ_z, λ_γ and λ_γ.
SM values at tree level are equal to g₁^z = κ_γ = κ_z = 1 and λ_γ = λ_γ = 0

Anomalous contribution to TGC is enhanced at high √s (increase of production cross-section).

Measuring triple gauge boson coupling in WW production •Luminosity: 30 fb⁻¹

CONCLUSIONS

- ATLAS: valuable precision measurements of SM parameters;
- W mass can be measured with a precision of 15 MeV (combinnig e/ μ and ATLAS + CMS);
- **Top mass:** ~ **1.2 GeV**
- Indirect Higgs mass: ~ 18% at 115 GeV;
- EW single top production: direct measurement of V_{tb} ;
- Sensitivity to anomalous TGC's: indicative of new physics!
- TCG parameters:

$$\begin{array}{ll} \Delta k_z, \ \lambda_z \approx 0.03\mathchar`{0.07} & at 95\% \mbox{ C.L.} \\ \Delta k_y, \ \lambda_y \approx 0.06\mathchar`{0.14} & at 95\% \mbox{ C.L.} \end{array}$$