Theoretical Overview

Oscar Éboli Universidade de São Paulo Departamento de Física Matemática eboli@fma.if.usp.br

April 5, 2006

Outline

- ♀ I. Electroweak Physics
- II. Electroweak symmetry breaking
- ✤ III. Supersymmetry
- ₽ IV. Extra dimensions
- ♀ V. Final remarks

Good times ahead!

What we know:

$$\mathcal{L} = \mathcal{L}_{\mathrm{kinetic}}^{\mathbf{f}} + \mathcal{L}_{\mathrm{kinetic}}^{\mathbf{GB}} + \mathcal{L}_{\mathrm{ffv}} + \mathcal{L}_{\mathrm{vvvv}} + \mathcal{L}_{\mathrm{vvvv}} + \mathcal{L}_{\mathrm{EWSB}}$$

 \mathbf{O} $\mathbf{SU}(3)_c \times \mathbf{SU}(2)_L \times \mathbf{U}(1)_Y$ gauge interaction between fermions and gauge bosons tested at 0.1% level.

Some information on the interactions between the gauge bosons

 $\bigcirc \mathcal{L}_{EWSB}$ has not been directly tested: origin of masses, flavor physics, ...

3 $\mathbf{SU}(2) \times \mathbf{U}(1)$ symmetry is broken:

- Without EWSB \implies fermions are massless
- QCD still confines \implies $\mathbf{p}, \mathbf{n}, \ldots$ with some changes
- $M_p > M_n$ (QED corrections)
- rapid decay of ${\bf p}$ into ${\bf n}$ changing completely the world: no atoms, etc

The EWSB sector has been elusive, but not for long!

EWSB ×1 TeV scale

(Lee, Quigg, Thacker)

 $\ensuremath{\textcircled{\circ}}\xspace \mathbf{W}_L^+ \mathbf{W}_L^- \to \mathbf{W}_L^+ \mathbf{W}_L^-$ violates unitarity without EWSB

$$\mathbf{T}(\mathbf{s},\mathbf{t}) = \mathbf{A} \left(\frac{\mathbf{p}}{\mathbf{M}_{\mathbf{W}}}\right)^4 + \mathbf{B} \left(\frac{\mathbf{p}}{\mathbf{M}_{\mathbf{W}}}\right)^2 + \mathbf{C}$$

 $\mathbf{A} = \mathbf{0}$ without the Higgs.

$$\textcircled{o} \text{ Including the Higgs: } \mathbf{a}_0 = -\frac{\mathrm{M}_H^2}{16\pi \mathrm{v}^2} \left[2 + \frac{\mathrm{M}_H^2}{\mathrm{s} - \mathrm{M}_H^2} - \frac{\mathrm{M}_H^2}{\mathrm{s}} \log\left(1 + \frac{\mathrm{s}}{\mathrm{M}_H^2}\right) \right]$$

 $\textcircled{\ } \text{High energy limit: } \mathbf{a}_0 \stackrel{M_H^2 \ll s}{\longrightarrow} - \frac{M_H^2}{8\pi \mathbf{v}^2} \implies M_H < 870 \text{ GeV} \ (M_H < 710 \text{ GeV})$

 $\textcircled{o} \text{ No Higgs limit: } \mathbf{a}_0 \stackrel{\mathrm{M}_{H}^2 \gg \mathrm{s}}{\longrightarrow} - \frac{\mathrm{s}}{32\pi \mathrm{v}^2} \implies \sqrt{\mathrm{s}_c} < 1.2 \text{ TeV}$

Limitations of the SM

Even after the Higgs discovery there are unanswered questions:

- what is the origin of fermion masses?
- do interactions unify at high energies?
- what is the dark matter?
- why is the cosmological constant so small?
- what is the dark energy?
- what is the origin of baryon asymmetry? ...

The SM also has some technical problems: (hierarchy problem)

- Quantum corrections drive scalar masses to high scale $\Delta M_h^2 \propto \Lambda_{UV}^2$

- This requires new physics in the TeV scale
- There are many solutions, pointing in different directions
 - Supersymmetry
 - Higgs is composite
 - * technicolor
 - * H is a Goldstone boson (little Higgs)
 - Extra spatial dimensions
 - * Large ED
 - * Warped ED (Randall-Sundrum)
 - * Universal extra dimensions ...

I. Electroweak Physics

Precison measurements:

* The parameters of the SM: $\{\mathbf{p}\} \equiv \{\alpha_{\mathbf{em}}, \alpha_{\mathbf{S}}, \mathbf{G}_{\mathbf{F}}, \mathbf{M}_{\mathbf{Z}}, \mathbf{m}_{\mathbf{i}} \dots \}$

* In general observables depend upon many parameters after RC

$$\mathcal{O}_{i}^{\mathrm{theory}}(\{\mathbf{p}\}) = \mathcal{O}_{i}^{\mathrm{tree}}(\alpha, \mathbf{G_F}, \mathbf{M_Z}) \left[\mathbf{1} + \boldsymbol{\Delta_i}(\{\mathbf{p}\})\right] \quad \text{e.g.}$$

$$\mathbf{M}_{\mathbf{W}}^{2} = \frac{\pi\alpha}{\sqrt{2}\mathbf{G}_{\mathbf{F}}\sin^{2}\theta_{\mathbf{W}}} \frac{1}{(1-\Delta \mathbf{r})}$$

* Precision measurements \implies non-trivial tests of the SM

 $|O^{meas} - O^{fit}| / \sigma^{meas}$ Measurement Fit 0 $\Delta \alpha_{had}^{(5)}(m_Z)$ $0.02758 \pm 0.00035 \ \ 0.02767$ m₇ [GeV] 91.1875 ± 0.0021 91.1874 Γ_{z} [GeV] 2.4952 ± 0.0023 2.4959 $\sigma_{had}^{\overline{0}}$ [nb] 41.540 ± 0.037 41.478 R $\textbf{20.767} \pm \textbf{0.025}$ 20.743 A^{0,I} fb $0.01714 \pm 0.00095 \ 0.01643$ $A_{I}(P_{\tau})$ 0.1465 ± 0.0032 0.1480 R_b 0.21629 ± 0.00066 0.21581 $\begin{array}{c} \mathsf{R}_{c} \\ \mathsf{A}_{fb}^{0,b} \\ \mathsf{A}_{fb}^{0,c} \end{array}$ 0.1721 ± 0.0030 0.1722 0.0992 ± 0.0016 0.1037 0.0707 ± 0.0035 0.0742 $\textbf{0.923} \pm \textbf{0.020}$ 0.935 Ab 0.668 A_c 0.670 ± 0.027 A_I(SLD) 0.1513 ± 0.0021 0.1480 $\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm fb})$ 0.2324 ± 0.0012 0.2314 80.404 ± 0.030 m_w [GeV] 80.376 Γ_w [GeV] $\textbf{2.115} \pm \textbf{0.058}$ 2.092 m_t [GeV] 172.5 ± 2.3 172.9

0 1 2 3

The SM is doing rather well

* Presently $\mathbf{m_{top}} = \mathbf{172.5} \pm \mathbf{2.3} \text{ GeV}$ * $\mathbf{M_W} = \mathbf{80.404} \pm \mathbf{0.030} \text{ GeV}$

 \ast How well should we know $\mathbf{M}_{\mathbf{W}}$ and $\mathbf{m}_{\mathbf{top}}?$

	$\Delta_{ ext{theo}}$	$\delta(\Delta \alpha_{\rm had}) = 0.00016$	$\Delta m_{top} = 2 \mathrm{GeV}$	$\Delta m_{top} = 1 \; \mathrm{GeV}$
$\Delta M_W/{ m MeV}$	6	3.0	12	6.1
$\Delta \sin^2 \theta_{\rm eff}^{\rm lept} \times 10^5$	4	5.6	6.1	3.1

 $m * M_W$ and m_{top} similar uncertainties to fits $\implies \Delta M_W \simeq 7 imes 10^{-3} \ \Delta M_{top}$

 $\label{eq:deltaMW} {}^{}_{\mathbf{W}} \simeq \mathbf{10} \; \text{MeV} \; \text{is desirable}$

Main SM processes

Process	σ (nb)	Evts/year (10 fb ⁻¹)	
Minimum Bias	10 ⁸	~ 10 ¹⁵	
Inclus. jets*	100	~ 10 ⁹	
bb	5 10 ⁵	~ 10 ¹² ~ 10 ⁸	
$W \to e\nu$	15		
$Z \to e^{\scriptscriptstyle +} \; e^-$	1.5	~ 10 ⁷	
tī	0.8	~ 10 ⁷	
Dibosons	0.2	~ 106	

LISHEP-2006

$\mathbf{M}_{\mathbf{W}}$ at the LHC

One way of measuring it is

$$\mathbf{m}_{\mathbf{T}}^{\mathbf{e}
u} = \sqrt{2\mathbf{E}_{\mathbf{T}}^{\mathbf{e}} E_{T} \left(1 - \cos \phi_{\mathbf{e}
u}
ight)}$$

sensitive to M_W through falling edge Simple cuts

$$\begin{array}{l} p_T^\ell > 25 \; \mathrm{GeV} \\ {I\!\!E}_T > 25 \; \mathrm{GeV} \\ p_T^{veto} = 20 \; \mathrm{GeV} \end{array}$$

 $\implies \text{large sample 30M evts/10 } \text{fb}^{-1} \\ \ensuremath{\overset{\,\,\text{\tiny\bullet}}{=}} 10 \quad \text{fb}^{-1} \implies \Delta \mathbf{M}_{\mathbf{W}} \simeq \mathbf{20} \quad \text{MeV} \\ \text{(stat+syst).} \end{aligned}$

* theory is in good shape: NNLO QCD and $\mathcal{O}(\alpha)$ * FSR can shft measured masses by $\simeq 50$ MeV

Top quark properties

rightarrow t is produced by $q\bar{q}
ightarrow t\bar{t}$ (10%) and $gg
ightarrow t\bar{t}$ (90%) with $\sigma(t\bar{t}) \simeq 830$ pb

 $\text{ \ensuremath{\$}}$ For $\mathcal{L}=10 \text{ fb}^{-1} \implies 10^7 \text{ t}\overline{\text{t}} \implies \text{LHC}$ is a top factory!

We can study several properties of the top

• m_{top}

- single top production
- W polarization
- Anomalous Wtb couplings
- FCNC
- top quantum numbers

* Channel $t\bar{t} \rightarrow jjb$ $(e/\mu)\nu b$: 2 b-tags; 2 extra jets; isolated lepton; E_T

After cuts $\mathbf{S}/\mathbf{B}\simeq \mathbf{78}$ and 87k events for 10 fb^{-1}

Reconstruct $\mathbf{W} \to jj$ and then $t \to bjj$

* Possible to measure M_t with a precision $\simeq 1.3$ GeV (systematic) for 10 fb⁻¹

Oscar Éboli

W polarization

* Allows to test the V - A couplings of the top:

$$F_{L}^{SM} = \frac{m_{top}^{2}}{m_{top}^{2} + 2M_{W}^{2}} \simeq 0.703 \quad ; \quad F_{0}^{SM} = \frac{2M_{W}^{2}}{m_{top}^{2} + 2M_{W}^{2}} \simeq 0.297 \quad ; \quad F_{R}^{SM} = 0$$

$$\Rightarrow \text{ In the W rest frame}$$

$$\frac{1}{N} \frac{dN}{d\cos\theta} \propto F_{0} \frac{\sin^{2}\theta}{2} + F_{L} \frac{(1 - \cos\theta)^{2}}{4} + F_{R} \frac{(1 + \cos\theta)^{2}}{4}$$

$$b \qquad t \qquad W^{+}$$

 $* \ 10 {\rm fb}^{-1} \Longrightarrow \Delta F_i \simeq \ 1-2 \times 10^{-2} \ \ (\text{at the Tevatron $2 {\rm fb}^{-1}$} \implies \Delta F_{0({\rm R})}^{stat} \simeq 0.03 \ (0.09))$

FCNC in top decays

FCNC couplings Vtc and Vtu are highly suppressed in the SM:

	SM	two-Higgs	SUSY	
$Br(t \to qg)$	5×10^{-11}	$\sim 10^{-5}$	$\sim 10^{-3}$	
$Br(t o q \gamma)$	5×10^{-13}	$\sim 10^{-7}$	$\sim 10^{-5}$	
$Br(t \to qZ)$	$\sim 10^{-13}$	$\sim 10^{-6}$	$\sim 10^{-4}$	

* We can describe these terms by effective lagrangians ($\kappa_l z^{\mu} \bar{t} \gamma_{\mu} P_L c$)

Process	95% CL in 2005	ATLAS 5σ (10 fb ⁻¹)	ATLAS 95% CL (10 fb ⁻¹)	
t→Zq	~ 0.1	5 10 ⁻⁴	3 10-4 🔶	— Reconstruct t $ ightarrow$ Zq $ ightarrow$ (I+I-)j
t→γq	0.003	1 10-4	7 10-5	
t→gq	0.3	5 10 ⁻³	1 10-3	— Huge QCD background

Improvement $10^2 - 10^3$ (Pralavorio, EPS05)

$$\left(\sin^2 heta_{
m eff}^{
m lept}
ight)$$

 $rak \sin^2 heta_{
m eff}^{
m lept} = rac{1}{4} (1 - {f g}_V^\ell / {f g}_A^\ell)$ defined at ${f M}_Z$

 $\boldsymbol{\ast}$ Define the forward direction by the $\mathbf{e}^+\mathbf{e}^-$ boost direction

* can be obtained from $A_{FB} = B(A - \sin^2 \theta_{eff}^{lept})$ A and B know in NLO QCD and QED.

 $\texttt{\$ 10} \mathrm{fb}^{-1} \implies 15. \times 10^6 \ Z \rightarrow e^+ e^-$

* Large Z sample but there are NLO and PDF uncertainties * 100 fb⁻¹ $\implies \Delta \sin^2 \theta_{\text{eff}}^{\text{lept}} \simeq 0.00014$ (LEP 0.00016)

Oscar Éboli

☆ Deviations from SM in terms of 5 new parameters

$$\mathcal{L}_{\text{eff}}^{\text{WWV}} = -ig_{\text{WWV}} \left[g_1^V (W_{\mu\nu}^+ W^{-\mu} - W_{\mu\nu}^- W^{+\mu}) V^{\nu} + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{\lambda_V}{M_W^2} W_{\mu}^{+\nu} W_{\nu}^{-\rho} V_{\rho}^{\mu} \right]$$

LISHEP-2006

\Rightarrow smoking gun: $\hat{\sigma}$ grows with $\sqrt{\hat{s}}$

- \bigstar We must introduce form factors $(1+Q^2/\Lambda^2)^{-n}$
- ☆ NLO available; uncertainties PDFs

 $rightarrow \mathbf{pp}
ightarrow \mathbf{W} \gamma$ (Z): limits fitting $\mathbf{p_T^V}$

☆ Attainable 95% CL limits

anomalous coupling	direct LEP limits	indirect limits	pair production limits at the LHC
$\Delta\kappa_\gamma$	$[-0.105 \ , \ 0.069]$	$[-0.044 \ , \ 0.059]$	$[-0.034 \ , \ 0.034]$
λ_γ	$[-0.059 \ , \ 0.026]$	$[-0.061 \ , \ 0.10]$	$[-0.0014 \ , \ 0.0014]$
g_1^Z	$[-0.051 \ , \ 0.034]$	$[-0.051 \ , \ 0.0092]$	$[-0.0038\ ,\ 0.0038]$
$\Delta \kappa_Z$	$[-0.040 \ , \ 0.046]$	$[-0.050 \ , \ 0.0039]$	$[-0.040 \ , \ 0.040]$
λ_Z	$[-0.059 \ , \ 0.026]$	$[-0.061 \ , \ 0.10]$	$[-0.0028 \ , \ 0.0028]$

☆ The statistics will be enough to measure the form factors:

LISHEP-2006

- ★ It also possible to use WBF (hep-ph/0405269)
- \star 2 energetic forward jets \implies tagging
- **\star** rapidity gap \implies reduces QCD contamination
- \star Signal is enhanced at large $\mathbf{p}_{\mathrm{T}}^{\mathrm{V}}$

LISHEP-2006

★ Limits for $\Delta \kappa_{\mathbf{Z},\gamma}$ similar to VV production

$$\begin{aligned} -0.066 &\leq \Delta \kappa_{\gamma} \leq 0.052 \\ -0.038 &\leq \lambda_{\gamma} \leq 0.042 \\ -0.086 &\leq \Delta g_{1}^{Z} \leq 0.029 \\ -0.083 &\leq \Delta \kappa_{Z} \leq 0.034 \\ -0.024 &\leq \lambda_{Z} \leq 0.030 \\ -0.13 &\leq g_{5}^{Z} \leq 0.12 \end{aligned}$$

★ Single V WBF can be used to completement the VV information on TGV

★ $\Delta \varphi_{jj}$ good to separate the anomalous TGV

Quartic gauge-boson vertices (hep-ph/0310141)

* Anomalous couplings containing photons:

$$\mathcal{W}^{\gamma}_{\mathbf{0}} = -rac{\mathbf{e}^{\mathbf{2}}\mathbf{g}^{\mathbf{2}}}{\mathbf{2}}\mathbf{F}_{\mu
u}\mathbf{F}^{\mu
u}\mathbf{W}^{+lpha}\mathbf{W}^{-}_{lpha}~,~~\mathcal{W}^{\gamma}_{\mathbf{c}} = -rac{\mathbf{e}^{\mathbf{2}}\mathbf{g}^{\mathbf{2}}}{4}\mathbf{F}_{\mu
u}\mathbf{F}^{\mulpha}(\mathbf{W}^{+
u}\mathbf{W}^{-}_{lpha}+\mathbf{W}^{-
u}\mathbf{W}^{+}_{lpha})~.$$

***** Best channel is VV production via WBF

 $\mathbf{p} + \mathbf{p} \to \mathbf{q} + \mathbf{q} \to \mathbf{j} + \mathbf{j} + \gamma + \gamma \text{ and } \mathbf{j} + \mathbf{j} + \gamma + (\mathbf{Z}^* \operatorname{or} \gamma^* \to) \ell^+ + \ell^- ,$

- \star 2 energetic forward jets with rapidity gap \implies tagging
- **\star** Signal is enhanced at large $\mathbf{M}_{\gamma\gamma(\ell\ell\gamma)}$
- ★ The background has to be estimated from data

★ Typical limits: LEP $|\frac{\mathbf{k}_{i}^{j}}{\Lambda^{2}}| \lesssim \mathcal{O}(10^{-2} \text{ GeV}^{-2})$; LHC $|\frac{\mathbf{k}_{i}^{j}}{\Lambda^{2}}| \lesssim 1-6 \times 10^{-6} \text{ GeV}^{-2}$

* Quartic couplings without photons (O.E, C Gonzalez-Garcia, J.K. Mizukoshi)

$$\label{eq:O0} \begin{split} & \circledast \mathcal{O}_{0} = \mathbf{g}^{\alpha\beta} \mathbf{g}^{\gamma\delta} \left[\frac{1}{2} \left(\mathbf{W}_{\alpha}^{+} \mathbf{W}_{\beta}^{+} \mathbf{W}_{\gamma}^{-} \mathbf{W}_{\delta}^{-} + \mathbf{W}_{\alpha}^{+} \mathbf{W}_{\gamma}^{+} \mathbf{W}_{\beta}^{-} \mathbf{W}_{\delta}^{-} \right) + \frac{1}{\mathbf{c}_{\mathbf{w}}} \mathbf{W}_{\alpha}^{+} \mathbf{Z}_{\beta} \mathbf{W}_{\gamma}^{-} \mathbf{Z}_{\delta} + \frac{1}{4\mathbf{c}_{\mathbf{w}}^{2}} \mathbf{Z}_{\alpha} \mathbf{Z}_{\beta} \mathbf{Z}_{\gamma} \mathbf{Z}_{\delta} \right] \\ & \mathcal{O}_{1} = \mathbf{g}^{\alpha\beta} \mathbf{g}^{\gamma\delta} \left[\mathbf{W}_{\alpha}^{+} \mathbf{W}_{\beta}^{-} \mathbf{W}_{\gamma}^{+} \mathbf{W}_{\delta}^{-} + \frac{1}{\mathbf{c}_{\mathbf{w}}} \mathbf{W}_{\alpha}^{-} \mathbf{W}_{\beta}^{+} \mathbf{Z}_{\gamma} \mathbf{Z}_{\delta} + \frac{1}{4\mathbf{c}_{\mathbf{w}}^{2}} \mathbf{Z}_{\alpha} \mathbf{Z}_{\beta} \mathbf{Z}_{\gamma} \mathbf{Z}_{\delta} \right] \end{split}$$

***** Best channel is VV production via WBF

$$\mathbf{p} + \mathbf{p} \to \mathbf{j}\mathbf{j}\mathbf{W}^+\mathbf{W}^- \to \mathbf{j}\mathbf{j}\mathbf{e}^\pm\mu^\mp\nu\nu$$
 and $\mathbf{j}\mathbf{j}\mathbf{W}^\pm\mathbf{W}^\pm \to \mathbf{j}\mathbf{j}\mathbf{e}^\pm\mu^\pm\nu\nu$

* Again: 2 energetic forward jets with rapidity gap, $e\mu$, jet veto, E_T , and large ${\bf M}_{{\bf W}{\bf W}}^{{\bf T}}$

***** For $e^{\pm}\mu^{\mp}$ the largest background is ttj

* Background extracted from data (counting experiment)

* LHC attainable bounds are stronger than the present indirect limits $(-0.27 < \alpha_4 < 0.036 ; -0.68 < \alpha_5 < 0.090)$

LISHEP-2006

Constraining PDF (Pralavorio, EPS05)

** Use the $\mathbf{W} \to \mathbf{e}\nu$ rapidity spectrum to constrain $\mathbf{xg}(\mathbf{x}) = \mathbf{x}^{-\lambda}$

II. Electroweak symmetry breaking

SM Higgs:

(minimal scenario)

* In the SM there is just one Higgs doublet \implies just 1 Higgs boson after EWSB

* Direct searches at LEP \implies $M_{H} > 114.4$ GeV at 95% CL

* Precision measurements lead to $\mathbf{M}_{\mathbf{H}} < 186\text{--}219~\text{GeV}$

* is it around the corner?

LISHEP-2006

Production Mechanisms:

Processes known at least at NLO

* The possible decay channels are

* What happens when we add all the channels for the SM Higgs?

Light Higgs production via WBF

 $\boldsymbol{\ast}$ We can tag the final state jets in $\mathbf{q}\mathbf{q}\to\mathbf{H}\mathbf{q}\mathbf{q}\to\mathbf{H}\mathbf{j}\mathbf{j}$

- * Let's focus on $\mathbf{H} \to \tau^+ \tau^- \to \mathbf{e}^\mp \mu^\pm p_T$
- * The main backgrounds are EW and QCD production of $\tau \tau jj$. $t\overline{t} + n$ jets can be efficiently eliminated.
- * acceptance p_T and η ; rapidity gap; $\tau \tau$ reconstruction and jet veto.

* Even after full simulation the Higgs signal is nice

* $\tau \tau$ channel

* Even after full simulation the Higgs signal is nice

* WW channel

↔ How well can we measure the Higgs properties?

 \heartsuit For $\mathbf{M}_{\mathbf{H}} \lesssim 200 \; \text{GeV} \; \implies$ Higgs is rather narrow

$\odot M_{H} \lesssim 200 \ \text{GeV} \implies$ combine different channels (hep-ph/0406323)

SUSY Higgses at the LHC

SUSY requires more than one Higgs doublet

 \heartsuit Physical spectrum: 2 neutral CP-even states (h, H), 1 neutral CP-odd (A) and the charged \mathbf{H}^{\pm}

♦ The physical Higgs are mixtures of the initial doublets ⇒ couplings to other particles depend on mixing angles, *e.g.* $G_{hdd} = -i \frac{m_d \sin \alpha}{v \cos \beta}$

S At tree level there are only two independent parameters M_A and $\tan \beta$

$$M_{H^{\pm}}^2 = M_A^2 + M_W^2$$
; $M_{H,h}^2 = \frac{1}{2} \left(M_A^2 + M_Z^2 \pm ((M_A^2 + M_Z^2)^2 - 4M_Z^2 M_A^2 \cos^2 2\beta)^{1/2} \right)$

Note that $M_h < M_Z$. Radiative correction help to evade this limit

One state similar to a light SM Higgs

No-lose theorem

\heartsuit for a neutral CP–even higgs at the LHC in WBF and ${\bf H}/{\bf h} \to \tau \tau$ (maximum/no mixing)

LISHEP-2006

Stranching ratios for heavy SUSY spectrum ($\tan \beta = 3$) and 30

Signals and cross section vary a lot

 \bigcirc Like the branching ratios the importance of the different channels gets modified \implies the analysis has to be redone

Higgs is decay chain

* Depending on the SUSY point, Higgs might be produced copiously in decay chains.

* For instance, $\tilde{\chi}_0^2 \to h \tilde{\chi}_0^1$ versus $\tilde{\chi}_0^2 \to \ell^{\pm} \tilde{\ell}^{\mp} \tilde{\chi}_0^1$

Invisible Higgs

- * Many models exhibit Higgs bosons that decay into invisible final states:
- SUSY: $h \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$
- Majoron models: $h \rightarrow JJ$
- Extra dimensions: $Rh^2 \implies h \rightarrow G_0^n G_0^n$

* For an intermediate mass Higgs couplings to SM particles are small $(m_b^2/v^2 \leq 10^{-3}) \implies$ invisible modes can be $\simeq 100\%$

* WBF is a robust way to look for Higgs bosons, even invisible! (hep-ph/0009158)

$$qq \rightarrow qqVV \rightarrow qqH \quad (V = W \text{ or } Z)$$

- * Signal: two jets at large rapidities and large p_T
- * Significant backgrounds: EW and QCD $jjZ(\rightarrow \nu \bar{\nu})$; EW and QCD $jjW(\rightarrow \nu [\ell])$; QCD jj; QCD
- * Require a rapidity gap; large $\mathbf{M_{jj}}$ and lots of p_T
- * This a counting experiment!
- * Variable used to estimate backgrounds: $\Delta \phi_{ii}$

Oscar Éboli

* LHC reach in the invisible Br $\times \sigma/\sigma_{\rm SM}$

M_H (GeV)	110	120	130	150	200	300	400
10 fb $^{-1}$	12.6%	13.0%	13.3%	14.1%	16.3%	22.3%	30.8%
100 fb $^{-1}$	4.8%	4.9%	5.1%	5.3%	6.2%	8.5%	11.7%

* ϕ_{jj} carries information on the CP properties of the Higgs

* WBF can also reveal the CP nature of the Higgs (hep-ph/0105325)

Higgs quantum numbers

* $\mathbf{H} \to \mathbf{Z}\mathbf{Z} \to \ell\ell\ell\ell$: distributions to determine spin and CP (hep-ph/02100077)

* For light Higgs boson $\implies m_{\ell\ell}$ is a good discriminator

III. Supersymmetric models

SUSY has been extensively studied as a candidate for physics BSM:

- the most general extension of the Poincaré group;
- SUSY can lead to coupling unification;
- Weak scale SUSY can solve the hierarchy problem;
- it is perturbative;
- dynamical EWSB
- Many free parameters!
- SUSY has many signals ⇒ good work out

Goal: gather as much information as possible (masses, spin, etc) to reconstruct the low energy SUSY breaking parameters

Seneral features: complicated cascade decays with many intermediate states; E_T if $\mathbf{R} = (-1)^{3\mathbf{B}+\mathbf{L}+2\mathbf{s}}$ is conserved

If R-parity is not conserved the signals depend on the LSP decays

Inclusive SUSY search

* LHC \implies jets and missing E_T * $\sigma(1 \text{ TeV}) \simeq \mathcal{O}(10 \text{ pb})$ * define $\mathbf{M}_{SUSY} = \min(\mathbf{m}_{\tilde{g}}, \mathbf{m}_{\tilde{q}})$

$$\mathbf{M_{eff}} \equiv \sum_{j=1}^{4} \mathbf{p}_{T}^{j} + E_{T} \propto \mathbf{M}_{SUSY}$$

st Rather simple to rule out/discover gluinos and squarks up to $\simeq 2.5~{
m TeV}$

LISHEP-2006

LISHEP-2006

Exclusive SUSY search

Reconstruction is quite involved due to:

- long decay chains \implies huge combinatorics
- unknown boost of the subprocess CMS
- Undetectable LSP ⇒ not possible to reconstruct invariant masses event by event ⇒ study distributions

The edge is quite sharp

* Long decay chain \implies more edges (constraints) available $(m_{qll}^2)^{edge}$, $(m_{ql}^2)^{edge}_{max}$, $(m_{qll}^2)^{edge}_{max}$, $(m_{qll}^2)^{thres}_{max}$

The masses can be obtained with a precision

	LHC
$\Delta m_{\tilde{\chi}^0_1}$	4.8
$\Delta m_{\tilde{l}_{R}}$	4.8
$\Delta m_{ ilde{\chi}_2^0}^n$	4.7
$\Delta m_{ ilde q_L}^{lpha_2}$	8.7
$\Delta m_{ ilde{b}_1}^{iL}$	13.2

Unravelling the spin

OUED: KK tower with same spin as in the SM

 \bigcirc UED lead to similar signals \implies we must probe the spin!

Solution Basic idea: for a decay chain, the structure of interactions and spins lead to correlations between particles \implies this can be seen in invariant masses!

 $\textcircled{2} \widetilde{q}_L \rightarrow q \widetilde{\chi}_2^0 \rightarrow q l_2^\pm \widetilde{l}_R^\mp \rightarrow q l_2^\pm l_1^\mp \widetilde{\chi}_1^0 \hspace{0.1 cm} \text{(ph/0507170;ph/0405052)}$

$$\mathbf{\hat{m}} \equiv \mathbf{m}_{\ell \mathbf{q}} / \mathbf{m}_{\ell \mathbf{q}}^{\max}$$
; $A = \frac{d\sigma/dm_{jl^+} - d\sigma/dm_{jl^-}}{d\sigma/dm_{jl^+} + d\sigma/dm_{jl^-}}$

We can apply the same technique for the gluino (A.Alves, O.E., T.Plehn)

 $\textcircled{o} \tilde{g} \rightarrow \bar{b} \tilde{b}_L \rightarrow \bar{b} b \tilde{\chi}_2^0 \rightarrow q l_2^{\pm} \tilde{l}_R^{\mp} \rightarrow \bar{b} b l_2^{\pm} l_1^{\mp} \tilde{\chi}_1^0$

IV. Extra dimensions

Assume that the space has $\mathbf{3} + \mathbf{n}$ dimensions

- The signal is model dependent:
- one has to define the particles that propagate in ED;
- geometry of the ED: warped or flat (LED)

Particles that propagate in the bulk have a Kaluza-Klein (KK) tower in four dimensions: just their "Fourier" modes.

In LED just gravity in the bulk \implies there is a KK tower of gravitons with a small gap \implies leads to processes with E_T

In UED all particle propagate in the bulk \implies KK number is conserved \implies KK states must be produced in pairs

Solution of the second seco

& Let's consider Randall-Sundrum model (warped with only gravity on the bulk) \implies new massive spin-2 particles

 $\ensuremath{\$}$ There should be a series of resonances in $\mathbf{pp} \to \mathbf{G_n} \to \ell^+ \ell^-$

With mild cuts it is easy to extract the signal

Solution Series Can we probe the graviton spin?

Solution Solution Solution: $1 + \cos^2 \theta^*$ for spin1, $1 - \cos^4 \theta^*$ ($gg \to G$) and $1 - 3\cos^2 \theta^* + 4\cos^4 \theta^*$ ($q\bar{q} \to G$)

LISHEP-2006

Solution Series Can we probe the graviton spin?

Solution Solution Solution: $1 + \cos^2 \theta^*$ for spin1, $1 - \cos^4 \theta^*$ ($gg \to G$) and $1 - 3\cos^2 \theta^* + 4\cos^4 \theta^*$ ($q\bar{q} \to G$)

V. Final remarks

- LHC can probe a large number of BSM scenarios
- We don't know what is out there, but certainly is going to be exciting
- At least, we will discover a new force, the one responsible for EWSB

