Top Physics at LHC

J. Cuevas Univ. Oviedo, Spain and CMS collaboration LISHEP 2006

top physics is different!

 $\tau_{\rm top} \sim 10^{-24} \,\mathrm{s} \ , \ \Gamma^{-1} \approx \ (1.5 \,\,\mathrm{GeV})^{-1} \ << \Lambda_{\rm QCD}^{-1} \sim \ (200 \,\,\mathrm{MeV})^{-1}$

Top quark lifetime is short: decays before hadronizing
 No spectroscopy like other heavy flavor
 Top momentum and spin transferred
 to decay products

• Probes physics at higher scales than other known fermions

➤Top (or heavy top) very hip in many EWSB models: Higgs, Top Color,

Little Higgs, SUSY mirror models

Why is Top Mass Interesting?

Fundamental Standard Model parameter.

Special Relation to Higgs mass, together with W boson mass.

Top quark is heavy (~ 172 GeV) Yukawa coupling ~ 1. Near the EWSB scale.

If we can measure strength of this coupling (i.e.ttH), a test of the Higgs sector in the SM can be possible.

Detailed studies of top events by using M_{top} can be performed. e.g. tt resonance, spin 200 correlation, W helicity, new particle search

m, [GeV] Now at Tevatron : $m_t = 172.0 \pm 2.7 \text{ GeV/c}^2 m_H < 186 \text{ GeV/c}^2 (95\% \text{ C.L.})$ What can be obtained with $\Delta m_t \sim 1 \text{ GeV/c}^2$?

 \rightarrow If $\delta m_W = 15 \text{ MeV/c}^2$, $m_{top} = 175 \text{ GeV/c}^2$ for current $\Delta \alpha$, ($\delta m_H/m_H \approx 32\%$)

If $\delta m_W = 15 \text{ MeV/c}^2$ et $\Delta \alpha = 0.00012$, \rightarrow

 $(\delta m_{\mu}/m_{\mu} \approx 25\%)$

Top properties

We still know *little* about the top quark, limited by Tevatron statistics

Mass	precision <2%
Electric charge ² / ₃	-4/3 excluded @ 94% C.L. (preliminary)
Spin ½	not really tested – spin correlations
Isospin ½	not really tested
BR to b quark ~ 100%	at 20% level in 3 generations case
V – A decay	at 20% level
FCNC	probed at the 10% level
Top width	??
Yukawa coupling	??

This leaves plenty of room for **new physics** in top production and decay Tevatron run II starts to incisely probe the top quark sector

The LHC will open a new opportunity for **precision measurements**

- The Top quark is studied with an increasing level of precision at Tevatron
- However most of the measurements are still statistically limited
- Data taking will continue up to 2009 at Tevatron allowing experiments to perform precision measurements on the Top.
- In the meantime the Large Hadron Collider will enter into operation.
- The LHC will open a new opportunity for precision measurements of Top quark properties.

The Large Hadron Collider

Javier Cuevas

Possible LHC startup scenario

Machine startup in 4 phases gradually to nominal Luminosity

Summer 20	007 first collisions	
2007	(43+43 to 156+156 bunches)	1/100 nominal L
2008	(936+936 bunches; 75ns)	1/10 nominal L
2009-2010	(2808+2808 bunches; 25ns)	up to nominal L

Many uncertainties here: a more precise schedule soon (in spring 2006)

expect 1 - 10 fb-1 /expt on tape by end 2008

CMS and Atlas Detectors

Javier Cuevas

Lishep 2006-Rio de Janeiro

Javier Cuevas

Lishep 2006-Rio de Janeiro

Apri/ 2006eV

Top production and decay at LHC

At nominal Luminosity, ~ One top pair produced per second LHC is a Top factory

Lishep 2006-Rio de Janeiro

Top physics

- Detector Commissioning with early data
 - Use Top as calibration tool for jet scale, b-tagging
 - Crucial parameters for Top physics: jet energy scale,tagging, trigger,luminosity
- Precision Measurements
- Precise Top Mass determination
 - Provide Higgs mass constraint
 - W mass & Top mass are important measurements to scrutinize SM
- Cross sections
 - Main background for searchesBeyond the Standard Model at the LHC
 - V_{tb}

• Top properties

- Top electric charge
- Top spin polarization, W polarisation
- Top quark decays & coupling ,fcnc, rare decays
- Possible deviations due to New physics Beyond SM?

Di-lepton event selection

Selection is cut based:

- Single or di-lepton trigger
- Two isolated oppositely charged leptons with E_T >20 GeV and $|\eta|$ <2.5
- ☞ Missing E_T>40 GeV
- The At least two jets with $E_{T}{>}20~GeV$ and $\left|\eta\right|{<}2.5$
- Two tightly b-tagged jets

Main background represented by Z+jetswhen no b-tagging is present. \rightarrow cut the Z peak for leptons of same flavour

With tight b-tagging, efficiency about 5% (15% without b-tagging) with excellent background reduction

 \rightarrow S/B~5 (B mainly from leptonic τ decays)

Semileptonic event selection

Selection is cut based:

- Single lepton trigger
- $\ensuremath{^{@}}$ One isolated lepton with E_T>20 GeV and $|\eta|$ <2.5
- Therefore Figure 2.4 The exactly four jets with $E_T > 30$ GeV and $|\eta| < 2.4$
- Exactly two tightly b-tagged jets (P>60%)
- Exactly two anti b-tagged jets (P<30%)</p>

Main background represented by W+jets

(to a minor extent Z+jets and di-bosons)

\rightarrow Efficiency about 4% with excellent background reduction (S/B~4)

Further improvement can be obtained by a mass cut after the full event reconstruction Jet pairing via a likelihood ratio technique based on:

- $\bullet~\chi^2$ of the constrained fit imposing the W masses
- transverse momentum of the resulting tops
- difference between the fitted and the reconstructed W boson masses
- $\bullet \Delta R$ between the lepton and the hadronic b
- the b tagging probabilities

0.4

0.3

0.2

0.4

0.6

Lishep 2006-Rio de Janeiro

0.8

b-tag effciency measurement

- Calibrate b-tag algorithms on data using large tt statistics at LHC
- •Enrich b-content of a jet sample
- •Estimate b-purity from MC

•Apply any b-tagging algorithm on sample and estimate efficiency

- •Semileptonic decaying ttpairs (μ o e) combinatorial background
- •Fully leptonic cleaner but lower statistics

Uncertainty (absolute scale) 0.09 otal b-tag uncertainty Statistical b-taq uncertainty 0.08 Systematical b-tag uncertainty 0.07 (semi-muon) 0.06 0.05 0.04 0.03 fb⁻¹ 0.02 ag 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Combined Likelihood Ratio Cut

Javier Cuevas

Lishep 2006-Rio de Janeiro

Light quark jet energy scale calibration

- Determine absolute light quark jet energy scale from data itself using Wmass from the abundantly produced tt pairs at LHC
 - 1. rescale each light jet energy with a relative scaling factor ΔC keeping the $E/|\overline{p}|$ -ratio constant
 - 2. Remake/refit the obtained W mass spectrum $\rightarrow m_{W}(\Delta C)$
 - 3. Solve simple equation $m_{W}(\Delta C_{max} | data) = m_{W}^{PDG} \rightarrow best estimate for <math>\Delta C$
 - 4. Compare this shift with the true one from MC $\Delta C_{integer}$

Top mass: early studies (<1 fb⁻¹)

t and \overline{t} are produced central and back-to-back in the transverse plane Easy to trigger and select

Observation of clean top sample should be very fast Initial measurement of cross-section and mass Feedback on detector performance (JES, b-tagging, ...) and on MC description

Top mass: precision studies (1-10 fb⁻¹)

Measurement method (semileptonic)

Kinematic fit event by event using t and \overline{t} sides

$$M_{jj} = M_{lv} = M_W$$
 and $M_{jjb} = M_{lvb} = M_t^{fi}$

Dileptonic (10 fb⁻¹)

•Need to reconstruct full tt event to assess the 2 v momenta • 6 equations ($\Sigma p_T = 0$, $M_{Iv} = M_W$, $M_{Ivb} = M_t$)

Assume m_t and compute solution probability event by event using MC kinematic distributions

Choose m_t with highest mean probability on all events

Systematic uncertainty: ~2 GeV (PDF + b-frag.)

Final states with J/ ψ (100 fb⁻¹)

•Correlation between $M_{IJ/\psi}$ and m_t

- Low statistics: ~1000 evts/100 fb⁻¹
- •No systematics on b-jet scale !
- Systematic uncertainty: ~1 GeV (b-frag.)

Source (ATLAS hep-ex/0403021)	Error 10 fb ⁻¹
b-jet scale (±1%)	0.7
Final State Radiation	0.5
Light jet scale (±1%)	0.2
b-quark fragmentation	0.1
Initial State Radiation	0.1
Combinatorial bkg	0.1
TOTAL: Stat ⊕ Syst	0.9

A ~1 GeV accuracy on m_{top} seems achievable with 10 fb^{-1} with ATLAS/CMS

W polarization in top decay

• Top decay faster than hadronization timescales ->Spin information transmitted to Wb \rightarrow jjb / lvb Test SM couplings with clean probe, Top decay : major source of longitudinal W's -> Polarization depends only on M_t and M_W (LO)

• All 3 components in angular distribution of lepton in W rest frame :

W helicity results

Precision between 1% and 7% dominated by systematics

Top Physics at the LHC: goals at 10fb⁻¹

•Does the Top quark behaves as expected in the SM?

Top pair production						
Top mass, cross section, W&Top		Precision	Tevatron	LHC goals		
polarisations \approx same event selection			@2fb ⁻¹	1010 -		
 stat error negligible on measurements, 			Top Mass	<2%	<1%	
syst Limitations from jet scale FSR, PDF, lumi		Cross section	10%	<10%?		
		Top properties				
Top properties measurements		BR Wb	20%			
 Test the top decay with W Polarisations F0 F^L F^R (1-2%) 		W pol	40%	2%		
 Test the Top production with ttbar spin 			Spin corr		4%	
correlations			Charge	Exclude -4/3	Confirm 2/3	
 ttbar invariant mass distribution 			fcnc		Improvex100	
channel	Selected	0 -	CMS	Single Top	5σ discovery?	Measure
	@10fb ⁻¹	top _{had} + bg top _{had} (W _{isp} → τν) background				separately
lvb jjb	70K	0	-			
lvb jjb (high pt)	3,6K			Understand Top		
lvb lvb	20K			as BKG		
jjb jjb (high pt)	3,4K	0 0 0 100	200 300 400 m _{ton} (GeV)			

Javier Cuevas

Single top at the LHC

In principle s-channel more difficult than t-channel:

- Smaller cross section (1/25)
- There is not the characteristic feature of the extra forward jet
- t-channel itself is a very similar background

channel	Selected @10fb-1
t channel	2,5K
WT channel	1,5K
s channel	0,5K

- Use leptonic decay of the W
- Measure cross sections separately
- Even if statistical precision range from ~2% (t channel) to ~8% (s channel), studies will be mainly on BKG understanding to assess systematics which are dominant.
- First results are expected with 30fb⁻¹. cross sections and V_{tb}.

In top production

- Example of resonances decaying to tt
 , as predicted by various models
- Generic analysis for a resonance X with σ_x , Γ_x and BR(X $\rightarrow t\bar{t}$)

In top decay

- Example of t \rightarrow H⁺b with subsequent H⁺ $\rightarrow \tau v$ (2<tan β <40)
- Search for excess of τ-events or deficit of dilepton events
- → H⁺ discovery for M_{H+}<160 GeV with 30 fb⁻¹

Summary

• LHC will be a top factory: almost 10⁷ events produced with 10 fb⁻¹

- Measurements with negligible statistical uncertainties
- First steps towards precision measurements driven by systematics
- Challenge to get top mass ~1 GeV \rightarrow SM M_H constrained to <30%
- Test top production and decay e.g. by measuring W polarization ~1-2% and top spin correlation ~4% → anomalous tWb/gtt couplings, t→H+b, FCNC,
- LHC is on the road
 - First collisions in Summer 2007, initial measurements in 2 years from now, first precision measurements in 3 years from now with 1-10fb⁻¹
- A huge work needed prior to initial measurements
 - to understand the detectors & control systematics(BKG, PDF..)
 - Early top signals will also be critical to commissioning the detectors
- LHC has a great potential for Top physics
- Some of the earliest LHC physics results, and earliest sensitivity to new physics, could come from top physics
- Improvement of Top understanding & window BSM