Collider Physics

Oscar Éboli Universidade de São Paulo Departamento de Física Matemática eboli@fma.if.usp.br

March 30, 2006

Third part: Beyond the SM searches

- I. SUSY searches at the LHC
- ✤ II. SUSY Higgses at the LHC
- ⇒ III. Extra dimensions at the LHC

I. SUSY searches at the LHC

SUSY has been extensively studied as a candidate for physics BSM:

- the most general extension of the Poincaré group;
- SUSY can lead to coupling <u>single 60</u> unification; <u>single 60</u>
- Weak scale SUSY can solve the hierarchy problem;
- it is perturbative;
- SUSY has many signals ⇒ good work out

In the minimal SUSY extension of the SM the new states are

particle name	symbol	spin
gluino	\widetilde{g}	1/2
charginos	$ ilde{\chi}_1^\pm$, $ ilde{\chi}_2^\pm$	1/2
neutralinos	$ ilde{\chi}^0_1$, $ ilde{\chi}^0_2$, $ ilde{\chi}^0_3$, $ ilde{\chi}^0_4$	1/2
sleptons	$\tilde{e}_L, \tilde{\nu}_{e_L}, \tilde{e}_R$	0
	$ ilde{\mu}_L$, $ ilde{ u}_{\mu_L}$, $ ilde{\mu}_R$	0
	$ ilde{ au}_1, ilde{ au}_2, ilde{ u}_{ au_L}$	0
squarks	$ ilde{u}_L$, $ ilde{d}_L$, $ ilde{u}_R$, $ ilde{d}_R$	0
	$\tilde{c}_L, \tilde{s}_L, \tilde{c}_R, \tilde{s}_R$	0
	$ ilde{t}_1$, $ ilde{t}_2$, $ ilde{b}_1$, $ ilde{b}_2$	0
higgs	h, H, A, H^{\pm}	0

Interactions are easy to "remember"

- measure the masses, decay widths, production cross sections, mixing angles, etc., of the new particles,
- prove that each particle can be associated to its superpartner with the expected spin and parity, gauge quantum numbers and couplings,
- reconstruct the low energy SUSY breaking parameters
- This will require more than one machine!

- ✤ To study the SUSY signals we need the spectrum, lifetimes and the decays
- This depends on the soft breaking terms and point in the parameter space
- General features
- complicated cascade decays many intermediate states
- typical signal for $(\mathbf{R} = (-1)^{\mathbf{3B} + \mathbf{L} + \mathbf{2s}}$ conserved)
 - gluinos and squarks: jets
 gauginos and sleptons: leptons
 - \star LSP: \mathbb{E}_T

Oscar Éboli

SPS1a (MSUGRA)

$$\begin{split} m_0 &= 100 \; {\rm GeV} \; ; \qquad m_{1/2} = 250 \; {\rm GeV} \; ; \\ A_0 &= -100 \; {\rm GeV} \; ; \qquad \tan\beta = 10 \; ; \; \mu > 0 \end{split}$$

SPS1a has a light spectrum

Oscar Éboli

Ĩ	$m \; [{ m GeV}]$	decay	B
\tilde{e}_R	143.0	$ ilde{\chi}^0_1 e^-$	1.000
\tilde{e}_L	202.1	$ ilde{\chi}^0_1 e^-$	0.490
		$ ilde{\chi}_2^{ar{0}} e^-$	0.187
		$ ilde{\chi}_1^- u_e$	0.323
$\tilde{ u}_e$	186.0	$ ilde{\chi}_1^0 u_e$	0.885
		$ ilde{\chi}_2^0 u_e$	0.031
		$ ilde{\chi}_1^+ e^-$	0.083
$\tilde{\mu}_R$	143.0	$ ilde{\chi}_1^0\mu^-$	1.000
$ ilde{\mu}_L$	202.1	$ ilde{\chi}^0_1 \mu^-$	0.490
		$ ilde{\chi}_2^0 \mu^-$	0.187
		$ ilde{\chi}_1^- u_\mu$	0.323
$\tilde{ u}_{\mu}$	186.0	$ ilde{\chi}^0_1 u_\mu$	0.885
		$ ilde{\chi}_2^0 u_\mu$	0.031
		$ ilde{\chi}_1^+\mu^-$	0.083
$ ilde{ au}_1$	133.2	$ ilde{\chi}_1^0 au^-$	1.000
$\tilde{ au}_2$	206.1	$ ilde{\chi_1^0 au^-}$	0.526
		$ ilde{\chi}_2^0 au^-$	0.174
		$ ilde{\chi}_1^- u_{ au}$	0.300
$\tilde{ u}_{ au}$	185.1	$ ilde{\chi}^0_1 u_ au$	0.906
		$\tilde{\chi}_1^+ \tau^-$	0.067

Oscar Éboli

$ ilde{\chi}$	$m \; [{ m GeV}]$	decay	B
$ ilde{\chi}_1^0$	96.1		
$ ilde{\chi}^0_2$	176.8	$\tilde{e}_{R}^{\pm}e^{\mp}$	0.062
		$ ilde{\mu}_{R}^{\pm}\mu^{\mp}$	0.062
		$ ilde{ au}_1^{\pm} au^{\mp}$	0.874
$ ilde{\chi}^0_3$	358.8	$\tilde{\chi}_1^{\pm} W^{\mp}$	0.596
		$ ilde{ ilde{\chi}_1^0} Z^0$	0.108
		$ ilde{\chi}_2^0 Z^0$	0.215
$ ilde{\chi}_4^0$	377.8	$\tilde{\chi}_1^{\pm} W^{\mp}$	0.526
		$ ilde{ ilde{\chi}}^0_1 h^0$	0.064
		$ ilde{\chi}_2^0 h^0$	0.134

$\tilde{\chi}$	$m \; [{ m GeV}]$	decay	B
$\tilde{\chi}_1^+$	176.4	$ ilde{ au}_1^+ u_{ au}$	0.979
$\tilde{\chi}_2^+$	378.2	$ ilde{\chi}_1^0 W^+$	0.064
_		$ ilde{e}_L^+ u_e$	0.052
		$\tilde{\mu}_L^{\mp} u_\mu$	0.052
		$ ilde{ au}_2^{\mp} u_{ au}$	0.056
		$\tilde{\chi}_1^{\uparrow} Z^0$	0.244
		$ ilde{\chi_1^+}h^0$	0.170

BACK

Α

condition

scale

 $\overrightarrow{}$

 \Rightarrow

different

at the

Defined

AMSB spectrum

Inclusive SUSY search

* LHC \implies jets and missing E_T * $\sigma(1 \text{ TeV}) \simeq \mathcal{O}(10 \text{ pb})$ * define $\mathbf{M}_{SUSY} = \min(\mathbf{m}_{\tilde{g}}, \mathbf{m}_{\tilde{q}})$

$$\mathbf{M_{eff}} \equiv \sum_{j=1}^{4} \mathbf{p}_{T}^{j} + \mathbf{E}_{T} \propto \mathbf{M}_{\mathrm{SUSY}}$$

***** Example: cuts to extract the jets $+E_T$ signal

- 4 jets with $p_{\rm T} > 50~\text{GeV}$ (2 with $p_{\rm T} > 100~\text{GeV})$
- $I_T > \max(0.2M_{eff}, 100 \text{ GeV})$
- no lepton

 $M_0(GeV)$

has reach similar do mSUGRA

Exclusive SUSY search

Reconstruction is quite involved due to:

- long decay chains \implies huge combinatorics
- unknown boost of the subprocess CMS
- Undetectable LSP ⇒ not possible to reconstruct invariant masses event by event

Measurement of SUSY masses \implies kinematic endpoints (SPS1a)

$$\label{eq:consider_field} \mbox{{\sc k}} \hbox{\sc consider} \ \mbox{\tilde{q}_L} \rightarrow \mathbf{q} \tilde{\chi}^0_2 \rightarrow \mathbf{q} \mathbf{l}_2^\pm \mathbf{\tilde{l}_R^\mp} \rightarrow \mathbf{q} \mathbf{l}_2^\pm \mathbf{l}_1^\mp \tilde{\chi}^0_1$$

$$(\mathbf{m_{ll}^2})^{edge} = \frac{(\mathbf{m_{\tilde{\chi}_2^0}^2} - \mathbf{m_{\tilde{l}_R}^2})(\mathbf{m_{\tilde{l}_R}^2} - \mathbf{m_{\tilde{\chi}_1^0}^2})}{\mathbf{m_{\tilde{l}_R}^2}}$$

Cuts to isolate select this chain

- At least four jets: $p_{T,1} > 150$ GeV, $p_{T,2} > 100$ GeV, $p_{T,3} > 50$ GeV.
- $M_{\rm eff} \equiv E_{T,{
 m miss}} + p_{T,1} + p_{T,2} + p_{T,3} + p_{T,4} > 600$ GeV
- $\mathbf{E}_{\mathbf{T},\mathrm{miss}} > \max(\mathbf{100} \ \mathsf{GeV}, \mathbf{0.2M}_{\mathrm{eff}})$
- Two isolated Opposite–Sign Same–Flavour (OS-SF) leptons (not τ) $p_T(l) > 20$ GeV and $p_T(l) > 10$ GeV

The edge is quite sharp

* Main background is from SUSY and can be subtracted from OSOF leptons

* Long decay chain \implies more edges available

* The masses can be obtained with a precision

* Some information on the spin of SUSY particles can also be extracted

II. SUSY Higgses at the LHC

SUSY requires more than one Higgs doublet

In the minimal version one extra Higgs doublet must added

$$\mathbf{\Phi_1} = \left(\begin{array}{c} \phi_1^+ \\ \phi_1^0 \end{array}\right) \quad , \quad \mathbf{\Phi_2} = \left(\begin{array}{c} \phi_2^0 \\ \phi_2^- \end{array}\right)$$

 \bigcirc Quartic couplings are fixed by SUSY \simeq gauge couplings

 \heartsuit Physical spectrum: 2 neutral CP-even states (h, H), 1 neutral CP-odd (A) and the charged \mathbf{H}^{\pm}

♦ The physical Higgs are mixtures of the initial doublets \implies couplings to other particles depend on mixing angles, *e.g.* $G_{hdd} = -i \frac{m_d \sin \alpha}{v \cos \beta}$

 \diamondsuit At tree level there are only two independent parameters M_A and $\tan\beta$

$$\mathbf{M}_{\mathbf{H}^{\pm}}^{2} = \mathbf{M}_{\mathbf{A}}^{2} + \mathbf{M}_{\mathbf{W}}^{2}$$
; $\mathbf{M}_{\mathbf{H},\mathbf{h}}^{2} = \frac{1}{2} \left(\mathbf{M}_{\mathbf{A}}^{2} + \mathbf{M}_{\mathbf{Z}}^{2} \pm ((\mathbf{M}_{\mathbf{A}}^{2} + \mathbf{M}_{\mathbf{Z}}^{2})^{2} - 4\mathbf{M}_{\mathbf{Z}}^{2}\mathbf{M}_{\mathbf{A}}^{2}\cos^{2}2eta
ight)$

Note that $\mathbf{M_h} < \mathbf{M_Z}$

Radiative correction help to evade this limit

$$\Delta M_h^2 = rac{3G_\mu}{\sqrt{2}\pi^2}m_t^4\log\!rac{M_{ ilde{t}}^2}{m_t^2} \lesssim 140~\text{GeV}$$

One state similar to a light SM Higgs

Stanching ratios for heavy SUSY spectrum ($\tan \beta = 3$) and 30

Stranching ratios for heavy SUSY spectrum ($\tan \beta = 3$) and 30

Stranching ratios for heavy SUSY spectrum ($\tan \beta = 3$ (30))

No-lose theorem

\heartsuit for a neutral CP–even higgs at the LHC in WBF and ${\bf H}/{\bf h} \to \tau \tau$ (maximum/no mixing)

 \bigcirc Like the branching ratios the importance of the different channels gets modified \implies the analysis has to be redone

Higgs is decay chain

* Depending on the SUSY point, Higgs might be produced copiously in decay chains.

* For instance, $\tilde{\chi}_0^2 \to h \tilde{\chi}_0^1$ versus $\tilde{\chi}_0^2 \to \ell^{\pm} \tilde{\ell}^{\mp} \tilde{\chi}_0^1$

III. Extra dimensions at the LHC

* The signal is model dependent. Several searches are already under way

- Let's consider Randall-Sundrum model \implies new massive spin-2 particles
- ${\ensuremath{\$}}$ There should be a series of resonances in $\mathbf{M}_{\ell\ell}$

With mild cuts it is easy to extract the signal

Solution Series Can we probe the graviton spin?

Solution Solution Solution: $1 + \cos^2 \theta^*$ for spin1, $1 - \cos^4 \theta^*$ ($gg \to G$) and $1 - 3\cos^2 \theta^* + 4\cos^4 \theta^*$ ($q\bar{q} \to G$)

Solution Series Can we probe the graviton spin?

Solution Solution Solution: $1 + \cos^2 \theta^*$ for spin1, $1 - \cos^4 \theta^*$ ($gg \to G$) and $1 - 3\cos^2 \theta^* + 4\cos^4 \theta^*$ ($q\bar{q} \to G$)

