New Solutions to the Hierarchy Problem *What to Expect at the TeV Scale*

Lecture II

Gustavo Burdman

Instituto de Física - USP

Lishep 2006, Rio de Janeiro, March 27-30 2006

Gravity in Extra Dimensions

Can we really expect the extra dimensions to be flat?

- The Cosmological Constant (CC) in 4D is small but non-zero. What about in XD ?
- To stabilize XD with small CC in 4D slices (our universe) may require a large CC in the bulk. This fine-tuning of the CC is just the CC problem.
- But sizeable CC in bulk \Rightarrow bulk is not flat. How curved is the bulk ?
- Model-dependent question: How is the XD stabilized ?
- We opened Pandora's box: Curved extra dimensions.
- Maximally symmetric open metric: Anti-De Sitter. Also motivated by AdS/CFT string-gauge duality (Maldacena '98).

One compact extra dimension. Non-trivial metric induces small energy scale from Planck scale! (L. Randall, R. Sundrum).

Geometry of extra dimension generates hierarchy exponentially!

 $\Lambda_{\rm TeV} \sim M_{\rm Planck} \, e^{-k \, L}$

with k the curvature

Warped 5D metric in RS

$$ds^2 = e^{-2\kappa|y|} \eta^{\mu\nu} dx_\mu dx_\nu + dy^2$$

• Compactified on S_1/Z_2 with $L = \pi R$

and $k \leq M_P$, AdS₅ curvature.

• For
$$kR \simeq (11 - 12)$$

$$\longrightarrow \kappa e^{-\kappa \pi R} \simeq O(\text{TeV}).$$

Solving the Hierarchy Problem:

If Higgs localized at $y = \pi R$

$$S_H = \int d^4x \int_0^{\pi R} dy \sqrt{-g} \,\delta(y - \pi R) \left[g_{\mu\nu} \partial^{\mu} H^{\dagger} \partial^{\nu} H - \lambda \left(|H|^2 - v_0^2 \right)^2 \right]$$

• Warp factors e^{ky} appear in $g_{\mu\nu}$ and $\sqrt{-g}$.

$$S_H = \int d^4x \left[e^{-2k\pi R} \eta_{\mu\nu} \partial^{\mu} H^{\dagger} \partial^{\nu} H - e^{-4k\pi R} \lambda \left(|H|^2 - v_0^2 \right)^2 \right]$$

Canonically normalize $H \Rightarrow$

$$e^{-k\pi R}H \to H$$

What we get now is

$$S_H = \int d^4x \, \left[\eta_{\mu\nu} \partial^{\mu} H^{\dagger} \partial^{\nu} H - \lambda \left(|H|^2 - e^{-2k\pi R} v_0^2 \right)^2 \right]$$

 \Rightarrow If $v_0 \simeq M_P$, then "new"scale in exponentially suppressed

$$v = e^{-k\pi R} v_0$$

Choosing $kR \simeq O(10)$ gets us $v \simeq$ weak scale.

If only gravity propagates in the bulk (SM fields on TeV brane):

- \implies Kaluza-Klein graviton tower
 - Zero-mode graviton $G^{(0)}$ localized toward the Planck brane. This is why gravity is weak! $G^{(0)}$ couples to SM fields as $1/M_P^2$
 - ✓ First few KK graviton excitations localized toward TeV brane → They couple strongly (as $(1/TeV)^2$ to fields there. E.g.: Drell-Yan at hadron colliders

 $G^{(n)}$

Bulk Life in WED

- In original proposal, only gravity propagates in 5D bulk.
- RS is a solution of the hierarchy problem. But origin of EWSB? And flavor ? ...
- Allowing gauge fields and matter to propagate in the bulk opens many possibilities: models of EWSB, GUTs, <u>flavor</u>, ...
- **J** The 5D mass of a bulk fermion = *localization* of zero-mode.
- If Higgs remains on TeV brane: Fermions localized toward TeV brane are more massive Fermions localized toward the Planck brane are lighter

 \rightarrow Fermion Geography

Gauge Fields in the 5D bulk

Gauge Fields in the 5D bulk: KK decomposition in 4D (for $A_y = 0$ gauge):

$$A_{\mu}(x,y) = \frac{1}{\sqrt{2\pi R}} \sum_{n=0}^{\infty} A_{\mu}^{(n)}(x) \chi^{(n)}(y) ,$$

Zero-mode $A_{\mu}(x)^{(0)}$ + KK tower of massive gauge bosons for n > 0, with masses

$$m_n \simeq (n - O(1)) \times \pi \kappa e^{-\kappa \pi R}$$

I.e. for appropriate choice of κR 1st KK excitations are O(TeV).

- Ist KK excitations have $\chi^{(n)}(y)$ localized toward TeV fixed point.
- The Gauge Symmetry usually either is or embeds the SM: e.g. $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X$ (restores custodial symm.)

WED and Flavor

Fermion Fields in the bulk: 5D fermion field KK decomposition

$$\Psi_{L,R}(x,y) = \frac{1}{\sqrt{2\pi R}} \sum_{n=0} \psi_n^{L,R}(x) e^{2\kappa|y|} f_n^{L,R}(y)$$

9 5D fermion bulk mass term \longrightarrow localization of fermion fields:

$$S_f = \int d^4x \, dy \, \sqrt{-g} \left\{ \dots - c \, \kappa \bar{\Psi}(x, y) \Psi(x, y) \right\} \, dy$$

with $c \simeq O(1)$.

 \blacksquare => Fermion zero-modes can be localized by choosing c :

$$f_0^{R,L}(y) = \sqrt{\frac{\kappa \pi R (1 \pm 2c)}{e^{\kappa \pi R (1 \pm 2c)} - 1}} e^{\pm c \kappa y}$$

Flavor Models in WED

O(1) flavor breaking in bulk can generate fermion mass hierarchy:

Fermions localized toward the TeV brane can have larger Yukawas, Those localized toward the Planck brane have highly suppressed ones.

■ But fermions at ~ πR => strong couplings to 1st KK gauge bosons! E.g: 3rd generation quarks might have large couplings → flavor violation.

Electroweak Symmetry Breaking and WED

Several possibilities for model building:

- Higgs or Higgless (BC breaking)
- Light fermions on Planck brane or off (reduces S)
- Third generation remains a challenge

Electroweak Symmetry Breaking and WED

EW Precision constraints: potentially large corrections to gauge boson propagators

$$S \sim \frac{N}{\pi} = 16\pi \frac{v^2}{m_{KK}^2}$$

Important constraints for building models: Canceling the effect of S vs. small N.

Warped Extra Dimensions - Signals

- Narrow states \rightarrow KK modes (Large N). Spin 2 (graviton), possibly all other SM fields.
- No spaced resonances, but broad enhancements in cross sections (Small N).
- Flavor violation at tree level → Potentially rich array of deviations: Effects of KK gluons in CP asymmetries in B → φK_s, B → πK_s, B_s mixing, ...; Z mixing with KK excitations in b → sℓ⁺ℓ⁻
- <u>Conclusion</u>: Back to strong dynamics at the TeV scale. Can the extra dimensional picture help ?

Warped Extra Dimensions vs. Strong Dynamics

Little Higgs Mechanism

Solve the Hierarchy problem: keep the Higgs light, keeping the effects of the quantum corrections m_h^2 to a minimum.

- One way: If Higgs is (part of) a Nambu-Goldstone boson (NGB) then it cannot have a mass. (It has only derivative interactions).
- In the SM: $SU(2)_L \times U(1)_Y$ spontaneously broken to $U(1)_{EM}$

#NGBs = #broken generators = 3

But since the gauge symmetry is broken \Rightarrow the 3 NGBs are eaten.

 \blacksquare \Rightarrow to have NGBs left over, need that

Global Symmetry > Gauge Symmetry

Little Higgs Mechanism

- The spontaneous breaking of a Global symmetry would generate NGBs.
 We need that one of them be a SU(2)_L doublet (H).
- Problem: We do not want a massless Higgs. NGBs are exactly massless.
- Need some form of explicit breaking so that H gets a mass (pseudo-NGB).

Little Higgs Theories

• Example: π is a pNGB of $SU(2)_L \times SU(2)_R/SU(2)_V$.

- # of NGBs = 3 + 3 3 = 3
- The NGB $\vec{\pi} = (\pi^+, \pi^-, \pi^0)$ acquires a mass due to explicit breaking: quark masses $\neq 0 \Rightarrow$

$$m_{\pi}^2 = B_0 m_q$$

- Another Example:
 - $SU(2)_V \Rightarrow m_{\pi^{\pm}} = m_{\pi^0}$
 - But QED (i.e. $U(1)_{EM}$) explicitly breaks $SU(2)_V$ giving a mass difference (Dashen's formula).

Ingredients:

Global symmetry: SU(3)/SU(2)?
 If we gauge part of this with SM gauge group still get quadratic divergences ! E.g. SU(2)_L explicitly breaks global SU(3).

- Use SU(3) gauge symmetry ? This respects SU(3) global. But when we break the global symmetry, we break the gauge symmetry $\Rightarrow all$ NGBs are eaten!
- Solution: Enlarge global symmetry to $(SU(3))^2$.

$$\mathcal{L} = |D_{\mu}\Phi_1|^2 + |D_{\mu}\Phi_2|^2$$

with Φ_1 and Φ_2 NGBs from $(SU(3)/SU(2))^2$, and there is no potential at tree level.

The NGBs can be written as

$$\Phi_{1} = e^{i\pi/f} \begin{pmatrix} 0\\ 0\\ f \end{pmatrix} , \Phi_{2} = e^{-i\pi/f} \begin{pmatrix} 0\\ 0\\ f \end{pmatrix}$$

with

$$\pi = \pi^{a} t^{a} = \eta / \sqrt{2} + \begin{pmatrix} 0 & 0 & h_{1} \\ 0 & 0 & h_{2} \\ h_{1}^{*} & h_{2}^{*} & 0 \end{pmatrix}$$

and

$$\left(\begin{array}{c}h1\\h2\end{array}\right) = h$$

is the $SU(2)_L$ doublet we call the Higgs.

Gauge Symmetry: SU(3) (contains the SM $SU(2)_L \times U(1)_Y$)

It respects

$$\mathcal{L} = |D_{\mu}\Phi_{1}|^{2} + |D_{\mu}\Phi_{2}|^{2}$$

Both global SU(3)'s respected separately.

Gauge symmetry does lead to quadratically divergent terms

$$\frac{g^2}{16\pi^2}\Lambda^2 \left(\Phi_1^{\dagger}\Phi_1 + \Phi_2^{\dagger}\Phi_2\right) = \frac{g^2}{16\pi^2}\Lambda^2 \left(f^2 + f^2\right)$$

but it does not generate a $h^{\dagger}h$ term !

- But at one loop we can generate operators like $|\Phi_1^{\dagger}\Phi_2|^2$, respecting the SU(3) gauge symmetry, but generating a Higgs mass term.
- However, these are only log divergent:

$$\frac{g^4}{16\pi^2} \ln\left(\frac{\Lambda^2}{\mu^2}\right) |\Phi_1^{\dagger}\Phi_2|^2$$

This leads to a contribution to the Higgs mass

$$\delta m_h^2 \simeq \frac{g^4}{16\pi^2} \ln\left(\frac{\Lambda^2}{\mu^2}\right) f^2$$

that is $m_h \simeq f/4\pi$.

Energy Scales: $m_h \simeq f/4\pi$; $\Lambda \simeq 4\pi f$ (NDA)

But where is the miracle of the cancellations ? Or What states cancel the top loop, the gauge boson loop and the Higgs loop contributions to δm_h^2 ?

Since we have SU(3) (instead of $SU(2)_L \times U(1)_Y$) we have additional gauge bosons that get masses of order f. They cancel the quadratic divergences from SM gauge loops.

Also need to promote all fermion doublets to triplets of SU(3).
 ⇒ Additional fermions cancel quadratic divergences from SM fermion loops (particularly the top).

Little Higgs Theories

Many other models in the market:

- Littlest Higgs: SU(5)/SO(5) with $SU(2) \times SU(2)$
- T Parity models: large amounts of new states, but nice agreement with EW precision constraints.
- Many more · · ·
- All of them result in new fermions (at least "heavy tops") and new gauge bosons.
- If $f \simeq O(1)$ TeV, cutoff Λ is in the tens of TeV.
- Models make distinct predictions for production/decays of new particles.

Littlest Higgs Phenomenology

• LHC will have lot of new gauge bosons at 10^5 /year !

But many extensions of the SM predict extra gauge bosons ... How do we know is the Little Higgs ?

Littlest Higgs

- Little Higgs prediction: Symmetries dictate how the new gauge bosons couple to the Higgs (loop cancellations). ⇒ need to measure this coupling.
- Strategy: study the decays of W_H

■ Measuring the W_H production \Rightarrow mixing angle ψ . Gives prediction for $(W_H \rightarrow Z h)$, test model.