NEUTRINO PHYSICS FROM COLLIDERS

Renata Zukanovich Funchal Instituto de Física – Universidade de São Paulo

March 29, 2006 Rio de Janeiro, Brazil

LISHEP 2006

International School on High Energy Physics Session C - Wokshop on Collider Physics Session B - Advanced School on HEP

N

Neutrinos in the Standard Model

Neutrinos Beyond the Standard Model

Neutrino Oscillations

Experimental Evidence

Connection with Collider Physics

3 active neutrinos, singlets of $SU(3)_{c} \otimes U(1)_{em}$

$$- \mathcal{L}_{ ext{CC}} = rac{g}{\sqrt{2}} \sum_\ell \overline{
u_{ ext{L}\ell}} \gamma^lpha \ell_{ ext{L}}^- W^+_lpha + ext{h.c.}$$

$$-\mathcal{L}_{ ext{CN}} = rac{g}{2\cos heta_W} \sum_\ell \overline{
u_{ ext{L}\ell}} \gamma^lpha
u_{ ext{L}\ell} Z^0_lpha$$

NC interaction

Number of Neutrinos from LEP

 Z^0 partial width to invisible final state @LEP (90's) \rightarrow 3 active v's $N_v = 3.00 \pm 0.07$ (direct meas.) $N_v = 2.994 \pm 0.012$ (SM fit)

$G^{ ext{SM}} = old SU(3)_c \otimes old SU(2)_L \otimes U(1)_Y$

fermion masses arise from

$$\mathcal{L}_{\text{Yukawa}} = Y_{\ell_i \ell_j}^{\ell} \overline{L_{L\ell_i}} \phi E_{R\ell_j} + \text{h.c.} \qquad E_R = \ell_R$$

$$\langle \phi \rangle = \begin{pmatrix} 0 \\ \frac{v}{\sqrt{2}} \end{pmatrix} \qquad \longrightarrow \qquad \mathbf{G}^{\text{SM}} \rightarrow \text{SU(3)}_c \otimes \text{U(1)}_e$$

loop corrections $\frac{Y_{ij}}{v}\phi\phi L_{Li}L_{Lj}$

 $\mathbf{C}_{\mathrm{global}} = U_B \otimes U_e \otimes U_\mu \otimes U_ au$

Neutrinos are massless in the SM !

m

$\mathbf{Q} = \mathbf{0}$

Dirac Neutrinos

Majorana Neutrinos

$$oldsymbol{
u} = egin{pmatrix} \chi_R \ \chi_L \end{pmatrix} egin{pmatrix}
u^c = egin{pmatrix} -i\sigma^2\chi_L^* \ i\sigma^2\chi_R^* \end{pmatrix} \end{pmatrix}$$

<u>Dirac Fermion</u> : needs independent left and right chiral projections

$$oldsymbol{
u}^{D} = egin{pmatrix} oldsymbol{\phi}_{R} \ oldsymbol{\phi}_{L} \end{pmatrix} = egin{pmatrix} 0 \ oldsymbol{\phi}_{L} \end{pmatrix} + egin{pmatrix} oldsymbol{\phi}_{R} \ 0 \end{pmatrix} =
u_{L} +
u_{R}$$

<u>Majorana Fermion</u> : needs only one independent chiral projection

$$oldsymbol{
u}^M = egin{pmatrix} -i oldsymbol{\sigma}^2 \chi_L^* \ \chi_L \end{pmatrix} = egin{pmatrix} 0 \ \chi_L \end{pmatrix} + egin{pmatrix} -i oldsymbol{\sigma}^2 \chi_L^* \ 0 \end{pmatrix} =
u_L +
u_L^c$$

Most General Neutrino Mass Term

$$\mathcal{L}^{\mathcal{D}+\mathcal{M}} = \mathcal{L}_L^M + \mathcal{L}_R^M + \mathcal{L}^D$$

$$\mathcal{L}^{D+M} = -\frac{1}{2} (\bar{\nu}_L^c \bar{\nu}_R) \begin{pmatrix} m_L & m_D \\ m_D^T & m_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} + h.c.$$

NEUTRINOS BEYOND THE STANDARD MODEL

1) SM effective low energy theory (have to consider nonrenormalizable terms)

spontaneous symmetry breaking

$$(Z_{ij}/M_{BSM}) \phi \phi L_{Li} L_{j} \longrightarrow (M)_{ij} = Z_{ij} v^2/(2 M_{BMS})$$

the source of this term is some new heavy field (tree level or loop)

★ extensions of SM generally imply neutrino mass

 \star understand origin and smallness of neutrino mass

 \star term violates L (total and flavor) \rightarrow lepton mixing

NEUTRINOS BEYOND THE STANDARD MODEL

2) adding new fields

$$v_{s1}, v_{s2}, v_{s3}, v_{s4}, v_{s5}, \dots, v_{sm}$$
 m sterile neutrinos

two types of mass term arise from renormalizable terms

$$-\mathcal{L}_{\mathrm{M}_{m{
u}}}=M_{D_{ij}}\overline{
u_{Li}}
u_{sj}+rac{1}{2}M_{M_{ij}}\overline{
u_{si}^c}
u_{sj}+\mathrm{h.c}$$

$$-\mathcal{L}_{\mathrm{M}_{m{
u}}}=rac{1}{2}\overline{ec{
u}^{c}}\mathrm{M}_{m{
u}}ec{
u}+\mathrm{h.c}$$

$$\vec{\nu}$$
 = $(
u_{Li} \,
u_{sj})^T$

$$\mathbf{M}_{\nu} = \begin{pmatrix} \mathbf{0} & \mathbf{M}_{D} \\ \mathbf{M}_{D}^{T} & \mathbf{M}_{N} \end{pmatrix}$$

complex & symmetric diagonilized by U matrix (3+m)

2) adding new fields

$$-\mathcal{L}_{\mathrm{M}_{m{
u}}}=M_{D_{ij}}\overline{
u_{Li}}
u_{sj}+rac{1}{2}M_{M_{ij}}\overline{
u_{si}^c}
u_{sj}+\mathrm{h.c}$$

Dirac Mass Term

- Transform as SU(2) doublet: generated after spontaneous symmetry breaking from a Yukawa term
 - **Conserves total L (but not flavor L)**

<u>Majorana Mass Term</u>

- ★ Singlet of GsM : can appear as a bare mass term
- **Breaks L (by 2 units)**

M_N>> ⟨φ⟩ : <u>see-saw mechanism</u> [Ramond (79); Gell-Mann et al. (79); Yanagida (79)]

$$\begin{array}{ll} \begin{array}{ll} {\color{black} mass \ eigenstates} & \text{interaction \ eigenstates} \\ \hline (\nu_1,\nu_2,\nu_3,...\nu_n) & n=3+m & \hline (\nu_{Le},\nu_{L\mu},\nu_{L\tau},\nu_{s1},...,\nu_{sm}) \\ \hline (e,\mu,\tau) & \hline (e^I,\mu^I,\tau^I) \end{array}$$

$$-\mathcal{L}_{\mathrm{M}} = (\overline{e_{\mathrm{L}}^{I} \mu_{\mathrm{L}}^{I} \tau_{\mathrm{L}}^{I}}) \operatorname{M}_{\ell} \ egin{pmatrix} e_{R}^{I} \ \mu_{R}^{I} \ \tau_{R}^{I} \end{pmatrix} + rac{1}{2} \overline{ec{
u}^{c}} \operatorname{M}_{
u} ec{
u} + \mathrm{h.c.}$$

\mathbf{V}^{ι} (3x3) unitary

\mathbf{V}^{v} (nxn) unitary

 $\mathbf{V}^{\ell\dagger}\mathbf{M}_{\ell}\mathbf{M}_{\ell}^{\dagger}\mathbf{V}^{\ell} = \operatorname{diag}(\boldsymbol{m}_{e}^{2}, \boldsymbol{m}_{\mu}^{2}, \boldsymbol{m}_{\tau}^{2}) \quad \mathbf{V}^{\nu\dagger}\mathbf{M}_{\nu}\mathbf{M}_{\nu}^{\dagger}\mathbf{V}^{\nu} = \operatorname{diag}(\boldsymbol{m}_{1}^{2}, \boldsymbol{m}_{2}^{2}, \boldsymbol{m}_{3}^{2}, ..., \boldsymbol{m}_{n}^{2})$

mass eigenstatesinteraction eigenstates
$$(\nu_1, \nu_2, \nu_3, ..., \nu_n)$$
 $n = 3 + m$ $(\nu_{Le}, \nu_{L\mu}, \nu_{L\tau}, \nu_{s1}, ..., \nu_{sm})$ (e, μ, τ) (e^I, μ^I, τ^I)

$$U_{ij}=P_{\ell,ii}V_{ik}^{\ell\dagger}V_{kj}^{
u}(P_{
u,jj})$$

 $\mathbf{2}$

U mixing matrix

 α

[Pontecorvo (57), Maki, Nakagawa, Sakata (62)]

observed eigenstate: $|
u_{lpha}
angle = \sum_{i=1}^{n} U_{lpha i}^{*} |
u_{i}
angle \quad lpha = e, \mu, au$ after travel distance L (L \approx t): $|
u_{lpha}(t)
angle = \sum_{i=1}^{n} U_{lpha i}^{*} |
u_{i}(t)
angle$ $P_{lphaeta} = |\langle
u_{eta}|
u_{lpha}(t)
angle|^{2}$ $= |\sum_{i=1}^{n} \sum_{j=1}^{n} U_{lpha i}^{*} U_{eta j} \langle
u_{j}(0)|
u_{i}(t)
angle|^{2}$

neutrinos with mass m_i, energy E_i can be described as

$$|
u_j(t)
angle=e^{-\imath E_j t}|
u_j(0)
angle$$

[Pontecorvo (57), Maki, Nakagawa, Sakata (62)]

$$E_j = \sqrt{p_j^2 + m_j^2} pprox p_j + rac{m_j^2}{2E_j}$$

 $\boldsymbol{P}_{\alpha\beta} = \boldsymbol{\delta}_{\alpha\beta} - 4\sum_{i=1}^{n-1}\sum_{j=i+1}^{n} \operatorname{Re}\left[\mathbf{U}_{\alpha i}\mathbf{U}_{\beta i}^{\star}\mathbf{U}_{\alpha j}^{\star}\mathbf{U}_{\beta j}\right]\sin^{2}\Delta_{ij}$

$$\mp 2\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\operatorname{Im}\left[\mathbf{U}_{\alpha i}\mathbf{U}_{\beta i}^{\star}\mathbf{U}_{\alpha j}^{\star}\mathbf{U}_{\beta j}\right]\sin 2\Delta_{ij}$$

CP-violating term : neutrino (-), antineutrino(+)

[Pontecorvo (57), Maki, Nakagawa, Sakata (62)]

$$E_j = \sqrt{p_j^2 + m_j^2} pprox p_j + rac{m_j^2}{2E_j}$$

 $\mathbf{p}_{i} \approx \mathbf{p}_{j} \equiv \mathbf{p} \approx \mathbf{E}$ $\mathbf{P}_{\alpha\beta} \equiv \boldsymbol{\delta}_{\alpha\beta} - 4\sum_{i=1}^{n-1}\sum_{j=i+1}^{n} \operatorname{Re}\left[U_{\alpha i}U_{\beta i}^{\star}U_{\alpha j}^{\star}U_{\beta j}\right] \sin^{2}\Delta_{ij}$

$$\Delta_{ij}\equiv rac{\Delta m_{ij}^2 L}{4E} \quad \Delta m_{ij}^2\equiv m_i^2-m_j^2$$

$$\Delta_{ij}=1,27\,rac{\Delta m_{ij}^2}{\mathrm{eV^2}}rac{L/E}{\mathrm{m/MeV}}$$

mixing matrix

$$\begin{aligned} \theta_{12} &= \theta_{sol} \quad \theta_{23} = \theta_{atm} \sim \pi/4 \quad \theta_{13} \sim 0 \\ \\ \Delta m_{ij}^2 &= m_i^2 - m_j^2 \\ \\ \Delta m_{31}^2 &= \Delta m_{32}^2 + \Delta m_{21}^2 \end{aligned}$$
 CP violating fase $\delta = ?$

MINS

If you see an oscillation signal with

 $P_{osc} = P \pm \delta P$

then carve out an allowed region in $(\Delta m^2, \sin^2 2\theta)$ plane.

P=sin²2θ sin²(1.27 Δm² L/E)

If you see no signal and limit oscillation with

P_{osc} < P @ 90% CL

then carve out an excluded region in the $(\Delta m^2, \sin^2 2\theta)$ plane.

ATMOSPHERIC NEUTRINO

v_{μ} disappearance observed !

Flux dependence on azimuth is directly related to distance traveled —

Perfect laboratory to search for oscillations

Neutrino Made in the Atmosphere

Atmosphere

Earth

Oscillation Survival Probability for $v_{\mu} \rightarrow v_{\tau}$

 $\Delta m^2 = 5 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta = 1.0$

Super-Kamiokande (1998)

 $4\pi E$

 $L_{ii}^{
m osc}$

2004

Experiment with reactor neutrinos in France

 $sin^2 2\theta_{13} < 0.15$ $sin^2 \theta_{13} < 0.04$

 $P^{osc} < 0.05$

SOLAR NEUTRINOS

Sudbury Neutrino

Espalhamento Elástico (CC+CN)

 $e^+ \mathcal{V}_{e,\mu,\tau} \longrightarrow e^+ \mathcal{V}_{e,\mu,\tau}$

1 kton D O - Sudbury, Canadá

Neutrinos arrive as different flavors

SOLAR + KamLAND

 $P_{ee}^{ ext{KL}} pprox s_{13}^4 + c_{13}^4 \sin^2 2 heta_{12} \sin^2$

Dominated by KamLAND

1.5 x 10⁻³ eV² $\leq |\Delta m^2_{32}| \leq 3.4 \times 10^{-3} eV^2$

Dominated by Atmospheric SK

 $0.50 < \sin \theta_{12} < 0.61$ (SNO)

 $\sin \theta_{13} < 0.20 \text{ (CHOOZ)}$

 $0.6 < \sin \theta_{23} < 0.8 \text{ (ATM)}$

@ 90 % CL

CONNECTION WITH COLLIDER PHYSICS

production of heavy Neutrinos (N)

 $pp \Rightarrow I^{+} I^{+} N \qquad I, I^{+} = e, \mu, \tau \qquad @ LHC$ [A. Ali, A.V.Borisov, N.B. Zamorin (2001)] $e+e- \Rightarrow N \lor \Rightarrow I \lor \lor @ CLIC$ [F. del Aquila, J.A. Aquilar-Saavedra (2005)]

 Bilinear R-parity violating scenarios (AMSB,SUGRA)
 @Tevatron and LHC
 [Valle et al., de Campos et al.]

$pp \Rightarrow \downarrow^+ \downarrow^+ N \qquad = e, \mu, \tau \quad @LHC$ [A. Ali, A.V.Borisov, N.B. Zamorin (2001)]

$\sigma(pp \Rightarrow l^+ l^{+} N) =$ 0.8 (1-¹/₂δ_{||'}) |U_{IN} U_{IN}|² F(√s,m_N) fb √s = 14 TeV

$e+e- \Rightarrow N \nu \Rightarrow I W \nu @CLIC$

[F. del Aguila, J.A. Aguilar-Saavedra (2005)]

$\sqrt{s} = 3 \text{ TeV}$

can detect heavy Majorana/Dirac N with $m_N = 1-2 \text{ TeV}$

$$\frac{1}{2}\lambda_{ijk}\ell_i\ell_j\bar{e}_k + \lambda'_{ijk}\ell_iq_j\bar{d}_k + \frac{1}{2}\lambda''_{ijk}\bar{u}_i\bar{d}_j\bar{d}_k + \epsilon_iH_u\ell_i$$

These terms can be forbidden imposing a discrete symmetry, R parity:

$$R = (-1)^{3B+L+2s}$$

SM states are even while SUSY states are odd under R.

 \Rightarrow If ν 's have majorana masses there is no reason to exclude lepton number violating interactions.

 \Rightarrow It would be nice to understand the pattern of masses and mixings using a weak scale SUSY extension of the SM.

Nice fact: SUSY with R-parity (lepton number) violation can generate neutrino masses at the electroweak scale in agreement with experimental data. <u>Schechter, Valle, Ross, Hall,...</u>

SUSY with bilinear R-parity violation

In the minimal SUSY extension of the SM the new states are

particle name	symbol	sp in
gluino	$ ilde{g}$	1/2
charginos	$ ilde{\chi}_1^\pm$, $ ilde{\chi}_2^\pm$	1/2
neutralinos	$ ilde{\chi}^0_1, ilde{\chi}^0_2, ilde{\chi}^0_3, ilde{\chi}^0_4$	1/2
sleptons	$\tilde{e}_L, \tilde{\nu}_{e_L}, \tilde{e}_R$	0
	$ ilde{\mu}_L, ilde{ u}_{\mu_L}, ilde{\mu}_R$	0
	$ ilde{ au}_1, ilde{ au}_2, ilde{ u}_{ au_L}$	0
squarks	$ ilde{u}_L, ilde{d}_L, ilde{u}_R, ilde{d}_R$	0
	$\tilde{c}_L, \tilde{s}_L, \tilde{c}_R, \tilde{s}_R$	0
	$ ilde{t}_1, ilde{t}_2, ilde{b}_1, ilde{b}_2$	0
higgs	h, H, A, <i>H</i> [±]	0

We must include the soft breaking terms (source of lots of free parameters!). We will concentrate on two scenarios: SUGRA and AMSB. Valle et al; de Campos et al

Electroweak symmetry breaking: the two Higgs doublets H_d and H_u and the sneutrino acquire a vev. *The symmetry is radiatively broken in AMSB and SUGRA*

Neutral fermion mass matrix:

• sneutrino vev's contributes to the mixing between neutrinos and neutralinos (charged leptons and charginos). In the basis $\psi^{0T} = (-i\lambda', -i\lambda^3, \tilde{H}_d^1, \tilde{H}_u^2, \nu_e, \nu_\mu, \nu_\tau)$ the neutral fermion mass matrix is

$$M_N = \begin{bmatrix} \mathcal{M}_{\chi^0} & m^T \\ m & 0 \end{bmatrix} \quad \text{where} \quad m = \begin{bmatrix} -\frac{1}{2}g'v_1 & \frac{1}{2}gv_1 & 0 & \epsilon_1 \\ -\frac{1}{2}g'v_2 & \frac{1}{2}gv_2 & 0 & \epsilon_2 \\ -\frac{1}{2}g'v_3 & \frac{1}{2}gv_3 & 0 & \epsilon_3 \end{bmatrix}$$

For $|\epsilon_i| \ll \mu$ we define $\xi \equiv m \cdot \mathcal{M}_{\chi^0}^{-1}$. M_N is approximately diagonalized by

$$\mathcal{N}^* \simeq \begin{pmatrix} N^* & 0\\ 0 & V_{\nu}^T \end{pmatrix} \otimes \begin{pmatrix} 1 & \xi^{\dagger}\\ -\xi & 1 \end{pmatrix} , \qquad (1)$$

where N^* diagonalizes the 4×4 neutralino mass matrix \mathcal{M}_{ν^0} and V_{ν} diagonalizes the

effective tree level neutrino mass matrix

$$\mathbf{M}^{\text{eff}} = -m \ \mathcal{M}_{\chi^0}^{-1} \ m^T = \frac{M_1 g^2 + M_2 g'^2}{4 \ \text{det}(M_{\chi^0})} \begin{pmatrix} \Lambda_1^2 & \Lambda_1 \Lambda_2 & \Lambda_1 \Lambda_3 \\ \Lambda_1 \Lambda_2 & \Lambda_2^2 & \Lambda_2 \Lambda_3 \\ \Lambda_1 \Lambda_3 & \Lambda_2 \Lambda_3 & \Lambda_3^2 \end{pmatrix}$$

with $\Lambda_i = \mu v_i + v_d \epsilon_i$. This is a low scale see-saw!

 \mathbf{D} M_N exhibits just one massive neutrino at tree level:

$$m_{\nu_3}^{\rm tree} = \frac{M_1 g^2 + M_2 {g'}^2}{4 \det(M_{\chi^0})} |\vec{\Lambda}|^2 \ , \ \tan \theta_{13} = -\frac{\Lambda_1}{\sqrt{\Lambda_2^2 + \Lambda_3^2}} \quad {\rm and} \quad \tan \theta_{23} = -\frac{\Lambda_2}{\Lambda_3}$$

The inclusion of radiative correction for the neutral fermion mass matrix gives rise to masses to the three neutrinos.

Dependence on AMSB parameters

SUSY particle decays

In BRpV models the LSP is no longer stable.

This allow to test these models at colliders! Hirsch (PRD); Romão (PRD); Bartl (NPB); Porod (PRD)

Rotating to the mass eigenstates leads to effective couplings like

$$\tilde{\chi}_1^0 - W^{\pm} - \ell \mid \tilde{\chi}_1^0 - Z - \nu \mid \tilde{d}_L - d - \nu \mid \tilde{u}_L - d - \ell \mid \tilde{\ell} - \ell - \nu$$

