Collider Physics

Oscar Éboli Universidade de São Paulo Departamento de Física Matemática eboli@fma.if.usp.br

March 29, 2006

Second part: Probing the Standard Model

- \Rightarrow I. Z production
- \Rightarrow II. \mathbf{W}^{\pm} production
- ✤ III. Other useful variables
- ⇒ IV. Top quark production at the LHC
- ▷ V. Higgs production at the LHC

I. Z production

Invariant mass variable

Consider an unstable particle (${f X}={f Z},\;{f W}^{\pm},\;{f t}$) decaying ${f X} o {f ab}\dots$

$$\frac{d\sigma}{d\mathbf{M}_{ab...}} \propto \frac{1}{(\mathbf{M}_{ab...}^2 - \mathbf{M}_V^2)^2 + \Gamma_V^2 \mathbf{M}_V^2}$$

and exhibits a peak for ${\bf M^2_{ab...}}=({\bf p_a+p_b+...})^2=(\ \sum_i^n p_i\)^2\approx {\bf M^2_V}$

 $\ensuremath{^{\,2}}$ For the same reason the production $ab \to X+$ anything exhibits a peak for $M^2_{ab} \simeq M^2_V$

If the decays products are observable \implies we can reconstruct $M_{ab...}$, e.g. $Z \rightarrow e^+e^-, \ b\bar{b}, \ \ldots$

Oscar Éboli

LISHEP-2006

$\circledast \mathbf{e^+e^-} \to \mathbf{Z}:$ in this case $\mathbf{M_{e^+e^-}} = \sqrt{s}$

$\circledast \mathbf{e^+e^-} \to \mathbf{Z}:$ in this case $\mathbf{M_{e^+e^-}} = \sqrt{s}$

Solution At the Tevatron $p\bar{p} \rightarrow \mathbf{Z} + \mathbf{X}$

* $\mathbf{Z} \rightarrow \mathbf{e^+e^-}$ at DØ * $\sigma(\mathbf{Z}) \simeq \text{few nb}$ * The background is small * basic cuts: $|\eta| < 2.5$ and $\mathbf{E_T} > 25$ GeV

120

110

Z \rightarrow **b** $\overline{\mathbf{b}}$ at CDF (hep-ex/9806022) . **B**r(Z \rightarrow **b** $\overline{\mathbf{b}}$)/BR(Z \rightarrow e⁺e⁻) \simeq 3.5 There are large QCD backgrounds:

 $\mathbf{gg}\;(\mathbf{q}\mathbf{\bar{q}})\to\mathbf{b}\mathbf{\bar{b}}$

with $\sigma \gtrsim \mu b$

Z \rightarrow **b** $\overline{\mathbf{b}}$ at CDF (hep-ex/9806022) . **B**r(Z \rightarrow **b** $\overline{\mathbf{b}}$)/BR(Z \rightarrow e⁺e⁻) \simeq 3.5 There are large QCD backgrounds:

$$\mathbf{gg} \; (\mathbf{q}\mathbf{\bar{q}}) \to \mathbf{b}\mathbf{\bar{b}}$$

with $\sigma \gtrsim \mu b$ *** Cuts:**

- $P_T^{\mu} > 7.5 \; {\rm GeV}$
- 2 SVX tags
- $\Delta \phi_{b\bar{b}} > 3$
- $\sum_{3} E_T < 10 \text{ GeV}$

Z \rightarrow **b** $\overline{\mathbf{b}}$ at CDF (hep-ex/9806022) . **B**r(Z \rightarrow **b** $\overline{\mathbf{b}}$)/BR(Z \rightarrow e⁺e⁻) \simeq 3.5 There are large QCD backgrounds:

$$\mathbf{gg}\;(\mathbf{q}\mathbf{ar{q}})
ightarrow \mathbf{b}\mathbf{ar{b}}$$

with $\sigma \gtrsim \mu b$ *** Cuts:**

- $P_T^{\mu} > 7.5 \text{ GeV}$
- 2 SVX tags
- $\Delta \phi_{b\bar{b}} > 3$
- $\sum_{3} E_T < 10 \text{ GeV}$

Much more can be done

(hep-ex/0309026)

II. \mathbf{W}^{\pm} production

Hadronic colliders: transverse mass variable

Consider the process $\mathbf{p}\mathbf{ar{p}} o \mathbf{W}\mathbf{X} o \mathbf{e}
u \mathbf{X}$

$$\mathbf{m}_{\mathbf{e}
u}^2 = (\mathbf{E}_{\mathbf{e}} + \mathbf{E}_{
u})^2 - (\vec{\mathbf{p}}_{\mathbf{e}\mathbf{T}} + \vec{\mathbf{p}}_{
u\mathbf{T}})^2 - (\mathbf{p}_{\mathbf{e}\mathbf{z}} + \mathbf{p}_{
u\mathbf{z}})^2 .$$

However, $\vec{\mathbf{p}}_{\nu}$ is not observable.

We define transverse mass

$$\mathbf{m}_{\mathbf{e}\nu\mathbf{T}}^2 \equiv (\mathbf{E}_{\mathbf{e}\mathbf{T}} + \mathbf{E}_{\nu\mathbf{T}})^2 - (\vec{\mathbf{p}}_{\mathbf{e}\mathbf{T}} + \vec{\mathbf{p}}_{\nu\mathbf{T}})^2 \approx 2\vec{\mathbf{p}}_{\mathbf{e}\mathbf{T}} \cdot \vec{\mathbf{p}}_{\nu\mathbf{T}} \approx 2\mathbf{E}_{\mathbf{e}\mathbf{T}} \mathbf{E}_T (1 - \cos\phi_{\mathbf{e}\nu})$$

* In general $0 \leq m_{e
u T} \leq m_{e
u}$ (Prove it.)

* For $q\bar{q}' \rightarrow W^* \rightarrow e\nu$ there is a Jacobian peak.

$$rac{\mathrm{d}\hat{\sigma}}{\mathrm{d}m_{\mathrm{e}
u,\mathrm{T}}^2} \propto rac{\Gamma_{\mathrm{W}} \mathbf{M}_{\mathrm{W}}}{(m_{\mathrm{e}
u}^2 - \mathbf{M}_{\mathrm{W}}^2)^2 + \Gamma_{\mathrm{W}}^2 \mathbf{M}_{\mathrm{W}}^2} \, rac{1}{\sqrt{m_{\mathrm{e}
u}^2 - m_{\mathrm{e}
u,\mathrm{T}}^2}}$$

* For $q\bar{q}' \rightarrow W^* \rightarrow e\nu$ there is a Jacobian peak.

$$rac{\mathrm{d}\hat{\sigma}}{\mathrm{d}m_{\mathrm{e}
u,\mathrm{T}}^2} \propto rac{\Gamma_{\mathrm{W}} \mathrm{M}_{\mathrm{W}}}{(m_{\mathrm{e}
u}^2 - \mathrm{M}_{\mathrm{W}}^2)^2 + \Gamma_{\mathrm{W}}^2 \mathrm{M}_{\mathrm{W}}^2} \, rac{1}{\sqrt{m_{\mathrm{e}
u}^2 - m_{\mathrm{e}
u,\mathrm{T}}^2}}$$

Rather insensitive to p_W
 m_T has a significant resolution sensitivity

rather easy to obtain the W

Fitting the data leads to ${\bf M}_{{\bf W}}, \text{ and}, \ \Gamma_{{\bf W}}$ (hep-ph/0311039)

 $\ensuremath{\overset{\mbox{\tiny \ensuremath{\$}}}$ We can get $\Gamma_{\mathbf{W}}$ from

$$\mathbf{R} \equiv \frac{\sigma_{\mathbf{W}} \cdot \mathbf{Br}(\mathbf{W} \to \mathbf{e}\nu)}{\sigma_{\mathbf{Z}} \cdot \mathbf{Br}(\mathbf{Z} \to \mathbf{e}\mathbf{e})} = \frac{\sigma_{\mathbf{W}}}{\sigma_{\mathbf{Z}}} \frac{\Gamma_{\mathbf{Z}}}{\Gamma(\mathbf{Z} \to \mathbf{e}\mathbf{e})} \frac{\Gamma(\mathbf{W} \to \mathbf{e}\nu)}{\Gamma_{\mathbf{W}}}$$

Second method: \mathbf{p}_{T} distributions

 $\ref{eq:period}$ In the CMS $\mathbf{p_{eT}} = \mathbf{p_e}\sin\theta^*.$ For a $2\rightarrow2$ process

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\mathbf{p}_{\mathrm{eT}}} = \frac{4\mathbf{p}_{\mathrm{eT}}}{\hat{\mathbf{s}}\sqrt{1-4\mathbf{p}_{\mathrm{eT}}^2/\hat{\mathbf{s}}}} \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\cos\theta^*}$$

there is a Jacobian peak at $\mathbf{p}_{\mathrm{eT}}=\mathbf{M}_{\mathbf{W}}/2$

Second method: $\mathbf{p}_{\mathbf{T}}$ distributions

 $\ensuremath{^{\ast}}$ In the CMS $\mathbf{p_{eT}}=\mathbf{p_e}\sin\theta^*.$ For a $2\rightarrow2$ process

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\mathbf{p}_{\mathrm{eT}}} = \frac{4\mathbf{p}_{\mathrm{eT}}}{\mathbf{\hat{s}}\sqrt{1-4\mathbf{p}_{\mathrm{eT}}^{2}/\mathbf{\hat{s}}}} \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\cos\theta^{*}}$$

there is a Jacobian peak at $\mathbf{p}_{e\mathrm{T}}=\mathbf{M}_{\mathbf{W}}/2$

small detector smearing effect
significant p_T^W effect

Second method: $\mathbf{p}_{\mathbf{T}}$ distributions

 $\ref{eq:period}$ In the CMS $\mathbf{p}_{\mathbf{eT}} = \mathbf{p}_{\mathbf{e}}\sin\theta^*.$ For a $\mathbf{2}\to\mathbf{2}$ process

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\mathbf{p}_{\mathrm{eT}}} = \frac{4\mathbf{p}_{\mathrm{eT}}}{\mathbf{\hat{s}}\sqrt{1-4\mathbf{p}_{\mathrm{eT}}^{2}/\mathbf{\hat{s}}}} \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\cos\theta^{*}}$$

there is a Jacobian peak at $\mathbf{p}_{e\mathrm{T}}=\mathbf{M}_{\mathbf{W}}/2$

small detector smearing effect
significant p_T^W effect

At LEP2 $\mathbf{e^+e^-} \to \mathbf{W^+W^-} : \mathbf{M_W}$ is reconstruct from the decay products

- *₩ qqqq* (46%)
- the largest background is $Z^* \rightarrow qq$ ($\simeq 10 \times$)
- require 4 jets
- require high visible energy and low missing momentum
- efficiency $\simeq 60\%$ and purity $\simeq 70\%$

$\mathbf{M}_{\mathbf{W}}$ at LEP2

- # At LEP2 $\mathbf{e^+e^-} \to \mathbf{W^+W^-}$: $\mathbf{M_W}$ is reconstruct from the decay products
- *₩ qqqq* (46%)

$\# qq\ell\nu$ (44%)

- the largest background is $Z^* \to qq$ some backgrounds Zee and Z^* ($\simeq 10 \times$)
- require 4 jets

- require 2 jets and a high momentum, isolated lepton
- require high visible energy and low purity \simeq efficiency $\simeq 80\%$ missing momentum
- efficiency $\simeq 60\%$ and purity $\simeq 70\%$

* Advantage: CM (=lab) energy is know \implies we can perform kinematical constraints!

* For $qq\ell\nu$ energy and momentum conservation:

 $\vec{p}_{\nu} = -E_{\ell}\vec{e}_{\ell} - E_{i}\vec{e}_{i} - E_{j}\vec{e}_{j}$ $E_{i} + E_{j} = E_{b}$ $E_{\ell} + E_{\nu} = E_{b},$

* Solve for \vec{p}_{ν} , E_i , and $E_j \implies$ two solutions

Oscar Éboli

* Advantage: CM (=lab) energy is know \implies we can perform kinematical constraints!

* For $qq\ell\nu$ energy and momentum conservation:

$$\vec{p}_{\nu} = -E_{\ell}\vec{e}_{\ell} - E_{i}\vec{e}_{i} - E_{j}\vec{e}_{j}$$
$$E_{i} + E_{j} = E_{b}$$
$$E_{\ell} + E_{\nu} = E_{b},$$

* Solve for \vec{p}_{ν} , E_i , and $E_j \implies$ two solutions

III. Other useful variables

 $\circledast \mathbf{H} \to \mathbf{W_1}\mathbf{W_2} \to \mathbf{q_1}\mathbf{\bar{q}_2} \ \mathbf{e}\nu$: A natural choice is

$$\mathbf{M}_{T,WW}^{\prime 2} = \left(\sqrt{\mathbf{p}_{T,jj}^2 + \mathbf{m}_{jj}^2} + \sqrt{\mathbf{p}_{T,e\nu}^2 + \mathbf{m}_{e\nu T}^2}\right)^2 - (\vec{\mathbf{p}}_{T,jje} + \vec{p_T})^2$$

since the ${\bf W}$ can be offshell

 $H \to \mathbf{Z_1Z_2} \to e^+e^- \ \nu \overline{\nu}$: in this case

$$M_{T,ZZ}^{2} = (E_{T,Z_{1}} + E_{T,Z_{2}})^{2} - (\vec{p}_{T,Z_{1}} + \vec{p}_{T,Z_{2}})^{2}$$
$$= \left(\sqrt{p_{T,ee}^{2} + M_{Z}^{2}} + \sqrt{\not{p}_{T}^{2} + M_{Z}^{2}}\right)^{2} - (\vec{p}_{T,ee} + \not{p}_{T})^{2}$$

if
$$\mathbf{p}_{\mathrm{T}}^{\mathrm{H}}=0$$
 then $\mathbf{M}_{\mathrm{T,ZZ}}pprox 2\sqrt{\mathbf{p}_{\mathrm{T,ee}}^2+\mathbf{M}_{\mathrm{Z}}^2}$

Oscar Éboli

$\label{eq:Homological} \overset{\hspace{0.1cm} \ast}{\circledast} \mathbf{H} \to \mathbf{W_1} \mathbf{W_2} \to \ell_1 \nu_1 \ \ell_2 \nu_2 \text{:}$

$$\mathbf{M}_{\mathbf{C},\mathbf{WW}}^{2} = \left(\sqrt{\mathbf{p}_{\mathbf{T},\ell\ell}^{2} + \mathbf{M}_{\ell\ell}^{2}} + \not{p}_{T}\right)^{2} - (\vec{\mathbf{p}}_{\mathbf{T},\ell\ell} + \vec{p}_{T})^{2}$$

an alternative is

$$\mathbf{M_{T,WW}}pprox \mathbf{2}\sqrt{\mathbf{p_{T,\ell\ell}^2}+\mathbf{M_{\ell\ell}^2}}$$

 \circledast For $\mathbf{M}_{\mathrm{H}} = 170~\text{GeV}$ at the Tevatron

IV. Top quark production at the LHC

- rightarrow t is produced by $q\bar{q} \rightarrow t\bar{t}$ (90%) and $gg \rightarrow t\bar{t}$ (10%) with $\sigma(t\bar{t}) \simeq 830$ pb
- $\text{ For } \mathcal{L}=10 \text{ fb}^{-1} \implies 10^7 \text{ t}\overline{\text{t}} \implies \text{LHC is a top factory!}$

 \circledast This is good to measure \mathbf{M}_t but it is also a background!

- \ref{shift} In the SM $t\to W^+b \implies t\to \ell\nu b$ (32 %) or $t\to qq'b$ (68 %) so
 - $t\overline{t} \rightarrow jjb \ jj\overline{b}$ (44%)
 - $t\overline{t} \rightarrow jjb \ (e/\mu) \nu b$ (30%)
 - $\mathbf{t}\overline{\mathbf{t}}
 ightarrow (\mathbf{e}/\mu)\mathbf{b} \ (\mathbf{e}/\mu)\nu\mathbf{b}$ (5%)

Top mass measurement in ${f t} {f t} o {f j} {f b} \; ({f e}/\mu) u {f b}$

Main background and their size

Process	σ (pb)
signal	250
$\mathbf{bb} ightarrow \ell u + jets$	$\mathbf{2.2 imes 10^6}$
$\mathbf{W}+ \ jets ightarrow \ell u + jets$	$7.8 imes10^3$
$\mathbf{Z} + \text{ jets} \rightarrow \ell^+ \ell^- + \text{ jets}$	$7.8 imes10^3$
$\mathbf{WW} ightarrow \ell u + jets$	17.1
$\mathbf{WZ} ightarrow \ell u + jets$	3.4
$\mathbf{Z}\mathbf{Z} ightarrow \ell^+\ell^- + ext{jets}$	9.2

 $\mathbf{S}/\mathbf{B} \simeq 10^{-4}$ This is not as bad as it looks.

Event selection

- 1 isolated ${f e}^\pm$ or μ^\pm with ${f p}_{T}>20$ GeV and $|\eta|<2.5$
- $I_T > 20 \text{ GeV}$
- 2 tagged b quarks with $\mathbf{p_T} > \mathbf{40}~\mathsf{GeV}$ and $|\eta| < \mathbf{2.5}$
- 2 light jets with $\mathbf{p_T} > \mathbf{40} \; \mathsf{GeV}$ and $|\eta| < \mathbf{2.5}$

	Process	Cross-section (pb)	Total efficiency (%)
After cuts	$t\bar{t}$ signal	250	3.5
${ m S/B}\simeq 78$	$b\bar{b} ightarrow l u + jets$	$2.2 imes 10^6$	3×10^{-8}
87k events	$W + jets \rightarrow l\nu + jets$	$7.8 imes 10^{3}$	2×10^{-4}
for 10 fb $^{-1}$	$Z + jets \to l^+l^- + jets$	$1.2 imes 10^3$	6×10^{-5}
	WW ightarrow l u + jets	17.1	7×10^{-3}
	$WZ \rightarrow l\nu + jets$	3.4	1×10^{-2}
	$ZZ \rightarrow l^+l^- + jets$	9.2	3×10^{-3}

${f ar{s}}$ Top quark mass from ${f t} ightarrow {f b} {f j} {f j}$

- The event present ≥ 4 jets (ISR and FSR)
- First recontruct the W: $|\mathbf{M_{jj}} \mathbf{M_W^{PDG}}| < \mathbf{20} \text{ GeV}$ (66%)
- choose the b-tagged jet leading to highest $\mathbf{p}_{\mathrm{T}}^{\mathrm{top}}$ (81%)

Oscar Ebo

V. Higgs production at the LHC

Production mechanisms

The possible decay channels are

* Large QCD backgground $\sigma(b\bar{b}) \simeq 200 \mu m \implies$ Let's start with $H_l \rightarrow \gamma \gamma$

 $\begin{array}{c} \hbox{$\stackrel{|}{\star}$} \mathbf{M}_{\mathbf{H}_l} \lesssim \mathbf{150} \; \mathsf{GeV} \\ \hbox{$\stackrel{|}{$\star$}$} \; \mathsf{Br}(\mathbf{H}_l \to \gamma \gamma) \simeq \mathbf{10^{-3}} \end{array}$

* Large QCD backgground $\sigma(b\bar{b}) \simeq 200 \mu m \implies$ Let's start with $H_l \rightarrow \gamma \gamma$

***** Requires a good ECALperformance: $\sigma \simeq 1 \text{ GeV}$ ***** S/B $\simeq 1 : 20$ ***** Background extracted from data

- * Let's focus on $\mathbf{H} \to \tau^+ \tau^- \to \mathbf{e}^\mp \mu^\pm p_T$
- * The main backgrounds are
 - $t\overline{t} + n$ jets with n = 0, 1, 2. The extra jet is a tagging jet.

- * Let's focus on $\mathbf{H} \to \tau^+ \tau^- \to \mathbf{e}^\mp \mu^\pm p_T$
- * The main backgrounds are
 - $t\overline{t} + n$ jets with n = 0, 1, 2. The extra jet is a tagging jet.
 - $\mathbf{b}\bar{\mathbf{b}}\mathbf{j}\mathbf{j}$ with $\mathbf{b}
 ightarrow
 u\ell\mathbf{c}$

- * Let's focus on $\mathbf{H} \to \tau^+ \tau^- \to \mathbf{e}^\mp \mu^\pm p_T$
- * The main backgrounds are
 - $t\overline{t} + n$ jets with n = 0, 1, 2. The extra jet is a tagging jet.
 - $\mathbf{b}\overline{\mathbf{b}}\mathbf{j}\mathbf{j}$ with $\mathbf{b}
 ightarrow \nu \ell \mathbf{c}$
 - QCD $\tau \tau j j$ that are higher order of DY $\mathbf{Z} \rightarrow \tau \tau$

- * Let's focus on $\mathbf{H} \to \tau^+ \tau^- \to \mathbf{e}^\mp \mu^\pm p_T$
- * The main backgrounds are
 - $t\overline{t} + n$ jets with n = 0, 1, 2. The extra jet is a tagging jet.
 - $\mathbf{b}\overline{\mathbf{b}}\mathbf{j}\mathbf{j}$ with $\mathbf{b}
 ightarrow \nu \ell \mathbf{c}$
 - QCD $\tau \tau j j$ that are higher order of DY $\mathbf{Z} \rightarrow \tau \tau$
 - EW $\tau \tau jj$: WBF of Z's

- * Let's focus on $\mathbf{H} \to \tau^+ \tau^- \to \mathbf{e}^\mp \mu^\pm p_T$
- * The main backgrounds are
 - $t\overline{t} + n$ jets with n = 0, 1, 2. The extra jet is a tagging jet.
 - $\mathbf{b}\overline{\mathbf{b}}\mathbf{j}\mathbf{j}$ with $\mathbf{b}
 ightarrow \nu \ell \mathbf{c}$
 - QCD $\tau \tau j j$ that are higher order of DY $\mathbf{Z} \rightarrow \tau \tau$
 - EW $\tau \tau jj$: WBF of Z's
 - QCD and EW WWjj production

- ***** Let's focus on $\mathbf{H} \to \tau^+ \tau^- \to \mathbf{e}^\mp \mu^\pm p_T$
- * The main backgrounds are
 - $t\overline{t} + n$ jets with n = 0, 1, 2. The extra jet is a tagging jet.
 - $\mathbf{b} \mathbf{ar{b} jj}$ with $\mathbf{b}
 ightarrow \nu \ell \mathbf{c}$
 - QCD $\tau \tau j j$ that are higher order of DY $\mathbf{Z} \rightarrow \tau \tau$
 - EW $\tau \tau jj$: WBF of Z's
 - QCD and EW WWjj production

The main cuts are:

• Rapidity gap and acceptance cuts

$$\begin{split} p_{T_j} &\geq 20 \; \text{GeV} \;, \; \; |\eta_j| \leq 5.0 \;, \; \; \bigtriangleup R_{jj} \geq 0.7 \;, \\ p_{T_\ell} &\geq 10 \; \text{GeV} \;, \; \; |\eta_\ell| \leq 2.5 \;, \; \; \bigtriangleup R_{j\ell} \geq 0.7 \;. \\ & \bigtriangleup R_{e\mu} \geq 0.4 \;. \\ \eta_{j,min} + 0.7 < \eta_{\ell_{1,2}} < \eta_{j,max} - 0.7 \;, \\ & \eta_{j_1} \cdot \eta_{j_2} < 0 \\ & \bigtriangleup \eta_{tags} = |\eta_{j_1} - \eta_{j_2}| \geq 4.4 \;, \end{split}$$

- b-veto: $p_{T_b} > 20 \text{ GeV}$, $\eta_{j,\min} < \eta_b < \eta_{j,\max}$.
- Missing transverse momentum $p_T > 30 \text{ GeV}$
- $M_{jj} > 800 \text{ GeV}$

• au au reconstruction: $M_{ au au} = m_{e\mu} / \sqrt{x_{ au_1} x_{ au_2}}$

$$\cos \phi_{e\mu} > -0.9$$
,
 $x_{\tau_1}, x_{\tau_2} > 0$,
 $x_{\tau_1}^2 + x_{\tau_2}^2 < 1$.

- Lepton correlations: $riangle {\bf R}_{e\mu} < 2.6$
- minijet veto:

$$\mathbf{p}_{\mathbf{Tj}}^{\mathrm{veto}} > \mathbf{p}_{\mathbf{T},\mathrm{veto}}$$
; $\eta_{\mathbf{j},\mathrm{min}}^{\mathrm{tag}} < \eta_{\mathbf{j}}^{\mathrm{veto}} < \eta_{\mathbf{j},\mathrm{max}}^{\mathrm{tag}}$

Oscar Éboli

***** Effect of the cuts for $\mathbf{M}_{\mathrm{H}} = 120 \text{ GeV}$ and a bins $\pm 10 \text{ GeV}$

	$H \to au au$	QCD	EW			QCD	EW	
cuts	signal	au au j j	au au j j	$t\bar{t}+jets$	$b \overline{b} j j$	WWjj	WWjj	S/B
forward tags	1.34	4.7	0.18	45	8.2	0.18	0.11	1/44
+ b veto				2.6				1/12
$+ p_T$	1.17	2.3	0.12	2.0	0.28	0.12	0.08	1/4.1
+ M_{jj}	0.92	0.67	0.10	0.53	0.13	0.049	0.073	1/1.7
+ non- $ au$ reject.	0.87	0.58	0.10	0.09	0.10	0.009	0.012	1/1
+ $\triangle R_{e\mu}$	0.84	0.52	0.086	0.087	0.028	0.009	0.011	1.1/1
+ ID effic. (\times 0.67)	0.56	0.34	0.058	0.058	0.019	0.006	0.008	1.1/1
$P_{surv,20}$	imes 0.89	imes 0.29	imes 0.75	imes 0.29	$\times 0.29$	imes 0.29	imes 0.75	-
+ minijet veto	0.50	0.100	0.043	0.017	0.006	0.002	0.006	2.7/1

Oscar Éboli

	$H \rightarrow \tau \tau$	QCD	EW			QCD	EW	
cuts	signal	au au j j	au au j j	$tar{t}+jets$	$bar{b}jj$	WWjj	WWjj	S/B
forward tags	1.34	4.7	0.18	45	8.2	0.18	0.11	1/44
+ b veto				2.6				1/12
$+ p_T$	1.17	2.3	0.12	2.0	0.28	0.12	0.08	1/4.1
+ M_{jj}	0.92	0.67	0.10	0.53	0.13	0.049	0.073	1/1.7
+ non- $ au$ reject.	0.87	0.58	0.10	0.09	0.10	0.009	0.012	1/1
+ $\Delta R_{e\mu}$	0.84	0.52	0.086	0.087	0.028	0.009	0.011	1.1/1
+ ID effic. (\times 0.67)	0.56	0.34	0.058	0.058	0.019	0.006	0.008	1.1/1
$P_{surv,20}$	$\times 0.89$	imes 0.29	imes 0.75	imes 0.29	imes 0.29	imes 0.29	imes 0.75	-
+ minijet veto	0.50	0.100	0.043	0.017	0.006	0.002	0.006	2.7/1

$\ensuremath{\overset{\hspace{0.5mm} \mbox{\tiny \mbx{\tiny \mbox{\tiny \mbox{\tiny \mbx{\tiny \mbx{\tiny \mbox{\tiny \mb}\mbox{\tiny \mbox{\tiny \mbx{\tiny \mbox{\tiny \mbox{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbox{\tiny \mbox{\tiny \mb}\mbox{\tiny \mb}\mbox{\tiny \mbox{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbx{\tiny \mb}\mb}\mbx{\tiny \mbx{\tiny \mb}\mb}\mbx{\tiny \mb}\mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mb}\mbx{\tiny \mbx{\tiny \mbx{\tiny \mb}\mbx{\tiny \mbx{\tiny\mb}\mbx{\tiny \mbx{\tiny\mb}\mb}\mbx{\tiny \mbx{\tiny\mbx{\tiny\mbx{\tiny\mb}\mbx{\tiny \mbx{\tiny\mbx{\tiny\mbx{\tiny\mbx{\tiny\mbx{\tiny\mbx{\tiny\mbx{\tiny\mbx{\tiny\mbx{\tiny\mbx{\tiny\mbx{\tiny\mbx{\mbx{\tiny\mb}\mbx{\tiny\mbx{\tiny\mb}\mbx{\m}\mbx{\m}\mb$

M_H	115	120	125	130	135	140	145	150
$B(H o au au) \cdot \sigma$ (fb)	0.93	0.84	0.74	0.62	0.51	0.39	0.27	0.19
$B(H \to WW) \cdot \sigma$ (fb)	0.015	0.024	0.034	0.045	0.057	0.067	0.072	0.076

Even after full simulation the Higgs signal is nice

$* \tau \tau$ channel

* Even after full simulation the Higgs signal is nice

WW channel

What happens when we add all the channels for the SM Higgs?

combining both detectors

