New Solutions to the Hierarchy Problem *What to Expect at the TeV Scale*

Gustavo Burdman Instituto de Física - USP

Lishep 2006, Rio de Janeiro, March 27-30 2006

Outline

- * The Hierarchy Problem: Why do we believe there will be new physics at the TeV scale ?
- * Theories with Extra Dimensions:
 - Large Extra Dimensions
 - Universal Extra Dimension
 - Warped Extra Dimensions
- * Taming the hierarchy with global or discrete symmetries:
 - The Little Higgs
 - The Twin Higgs

Limitations of the Standard Model

Many questions unanswered:

What is the origin of Fermion masses ?:

In the Standard Model, *ad hoc* couplings of Higgs to fermions are adjusted to obtain

 $(m_e)/(m_t) \sim 10^{-6}, \qquad m_{
u} \ \lesssim \ 1 \ {
m eV}$

Do interactions Unify at high energies ?

 $SU(3) \times SU(2)_L \times U(1) \longrightarrow G$?

Limitations of the Standard Model

- What is the origin of the Baryon Asymmetry ?
- What is the Dark Matter ?
- Why is the Cosmological Constant so small ?
- What is the Dark Energy ?

The Question at the TeV Scale

The Hierarchy Problem:

Why is

 $M_W ~(\sim 100 \text{ GeV}) \ll M_P ~(\sim 10^{19} \text{ GeV})?$

If Higgs elementary and the SM is valid up to M_P then what generates

$$\frac{M_W}{M_P} \ll 1$$

This requires fine-tuning of the SM parameters. Quantum corrections naturally drive v to M_P

The Hierarchy Problem

Quantum corrections to $m_h = \sqrt{2\lambda}v$:

$$\Delta m_h^2 = \frac{h}{\dots h}$$

$$\Rightarrow \quad \Delta m_h^2 \sim \mathcal{E}_{\rm UV}^2 \sim M_P^2$$

 $\Rightarrow \text{We need}$

$$\begin{pmatrix} m_h^{\text{bare}} & - \text{Radiative Corrections} \end{pmatrix} \sim m_h^{\text{phys.}}$$

 $(\mathcal{O}(M_P) & - & \mathcal{O}(M_P) \end{pmatrix} \sim 100 \text{GeV}$

In the Standard Model weak scale not naturally stable.

The Hierarchy Problem

- New physics at the TeV scale to stabilize the weak scale.
- Additional states cancel divergences due to symmetries (e.g. Supersymmetry)
- It is composite and "comes apart" at scale Λ .
 - Technicolor/Topcolor
 - Little Higgs: Higgs as a Nambu-Goldstone Boson.
- Extra Spatial Dimensions:
 - Large Extra Dimensions
 - Universal Extra Dimensions
 - Warped ED (Randall-Sundrum)

Compact Extra Dimensions

- Extra spatial dimensions with points periodically identified
- I Extra Dimension: equivalent to a circle

with $R = L/2\pi$. We identified the points

$$x \sim x + L \sim x + 2L \sim x + 3L \sim \cdots$$

- Assume space has 3 + n dimensions.
- The extra n dimensions are compact and with radius R.
- All particles are <u>confined</u> to a 3-dimensional slice ("brane").
- Gravity propagates in all 3 + n dimensions.

(Arkhani-Hamed, Dimopoulos, Dvali '98)

- Gravity appears weak ($M_P \ll M_W$), because it propagates in large extra dimensions... Its strength is diluted by the volume of the *n* extra dimensions.
- Fundamental scale is $M_* \sim M_W$, not M_P

 $M_P^2 \sim M_*^{n+2} R^n$

There is no hierarchy problem:
The fundamental scale of Gravity

 $M_* \sim 1 \text{ TeV}$

If we require $M_* = 1$ TeV:

 $R \sim 2 \cdot 10^{-17} \ 10^{\frac{32}{n}} \mathrm{cm}$

■ $n = 1 \implies R = 10^8$ Km. Already excluded!

- $n = 2 \implies R \simeq 2$ mm. Barely allowed by current gravity experiments.
- \square $n > 2 \implies R < 10^{-6}$ mm. This is fine.

Large Extra Dimensions - Compactification

When field propagates in one extra dimension

$$P_M = P_\mu + P_5$$

with $\mu = 0, 1, 2, 3$, $M = \mu, 5$.

Sut XD is compact $\Rightarrow P_5$ is quantized:
periodicity \Rightarrow wavewlength has to be integer number of $2\pi R$.

$$P_5 = \frac{n}{R}$$
, $(n = 0, 1, 2, 3, \cdots)$

Large Extra Dimensions - Compactification

If field has mass M

$$P_M P^M = P_\mu P^\mu - P_5^2 = P_\mu P^\mu - \frac{n^2}{R^2}$$

$$P_{\mu}P^{\mu} = M^2 + \frac{n^2}{R^2}$$

E.g. for a photon (or graviton) M = 0.
There is a "n = 0-mode" with zero mass (our photon/graviton), plus infinite excitations with masses n/R.

Compact extra dimensions \Rightarrow graviton excitations (Kaluza-Klein)

Mass gap $\Delta m \sim 1/R$

E.g. for

$$n = 2 \longrightarrow \Delta m = 10^{-3} \text{ eV.}$$

 $n = 3 \longrightarrow \Delta m = 100 \text{ eV.}$
 \vdots
 $n = 7 \longrightarrow \Delta m = 100 \text{ MeV.}$

Large Extra Dimensions - Phenomenology

- Individual KK graviton couplings gravitationally suppressed $(\sim 1/M_P)$.
- **9** But for $E \gg 1/R \rightarrow$ sum of KK mode results in

$$\sigma \sim \frac{E^n}{M_*^{n+2}}.$$

Collider Processes:

(Appelquist, Cheng, Dobrescu '01)

- If some SM fields propagate in the bulk \Rightarrow 1/R \gtrsim 1 TeV.
- But if we assume all fields can propagate in the extra dimensions.
 What is the allowed R?

For example, a scalar field $\Phi(x, y)$ in one extra dimension:

$$S[\Phi(x,y)] = \frac{1}{2} \int d^4x \, dy \left(\partial_M \Phi \partial^M \Phi - M^2 \Phi^2\right)$$

$$\Phi(y) = \Phi(y + 2\pi R)$$

Expand in Fourier modes:

$$\Phi(x,y) = \frac{1}{\sqrt{\pi R}} \sum_{n=0} \left[\phi_n(x) \cos\left(\frac{ny}{R}\right) + \tilde{\phi}_n(x) \sin\left(\frac{ny}{R}\right) \right]$$

• $\phi_n(x)$ and $\tilde{\phi}_n(x)$ are 4D fields.

Integrate over the compact dimension:

$$S_{4\text{Deff.}}[\phi, \tilde{\phi}] = \int_0^{2\pi R} dy \, S[\Phi]$$

with

$$S_{4\text{Deff.}} = \sum_{n=0}^{\infty} \frac{1}{2} \int d^{x} \left[\partial_{\mu} \phi_{n} \partial^{\mu} \phi_{n} - m_{n}^{2} \phi_{n}^{2} \right]$$
$$+ \sum_{n=0}^{\infty} \frac{1}{2} \int d^{x} \left[\partial_{\mu} \tilde{\phi}_{n} \partial^{\mu} \tilde{\phi}_{n} - m_{n}^{2} \tilde{\phi}_{n}^{2} \right]$$

with

$$m_n^2 = M^2 + \frac{n^2}{R^2}$$

Momentum conservation in the extra dimensions At any vertex, P_M , is conserved. Then 4D-momentum conservation $\Rightarrow P_5$ is conserved.

■ E.g.in
$$(1) + (2) \rightarrow (3)$$

$$p_5^{(1)} + p_5^{(2)} = p_5^{(3)}$$

In terms of KK modes, this reads

$$\pm n_1 \pm n_2 = \pm n_3$$

 \Rightarrow KK-number conservation

For instance,

 \Rightarrow KK excitations must be pair produced

This leads to

Bounds on 1/R are lower / Distinctive phenomenology

The action for a bulk fermion in 5D:

$$S_{\Psi} = \int d^4x \, dy \, \bar{\Psi}(x, y) \left[i \partial_M \Gamma^M - M \right] \Psi(x, y)$$
$$\int d^4x \, dy \, \bar{\Psi}(x, y) \left[i \partial_\mu \Gamma^\mu - M \right] \Psi(x, y) - \bar{\Psi}(x, y) \gamma_5 \partial_5 \Psi(x, y)$$

Clifford algebra in 5D

$$\{\Gamma_M, \Gamma_N\} = 2\eta_{MN}$$

with $\Gamma_{\mu} = \gamma_{\mu}$ and $\Gamma_5 = i\Gamma_5$. $\Rightarrow \Psi(x, y)$ are 4-component Dirac spinors.

After "dimensional reduction" (integrating in y):

$$S_{\psi} = \sum_{n=0} \int d^4x \left[\bar{\psi}_n \left(i \partial_{\mu} \gamma^{\mu} - M + i \frac{n}{R} \right) \psi_n \right]$$

Sero mode (n = 0), is always a vector-like fermion!
But in the SM we need chiral fermions!

Chirality: Define

$$\Psi = \Psi_L + \Psi_R$$

And ask properties under $y \rightarrow -y$ reflections ("parity"):

٦

$$\gamma_5 \Psi(-y) = \pm \Psi(y)$$

Given that

$$\gamma_5 \Psi(-y) = -\Psi_L(-y) + \Psi_R(-y)$$

If we have

$$\Psi_R(-y) = \Psi_R(y)$$
$$\Psi_L(-y) = -\Psi_L(y)$$

then $\Psi_L(x,y)$ is odd, $\Psi_R(x,y)$ is even under parity.

In this case, expanding in KK modes:

$$\Psi(x,y) = \frac{1}{\sqrt{\pi R}} \sum_{n=0} \left[\psi_{nR}(x) \cos\left(\frac{ny}{R}\right) + \tilde{\psi}_{nL}(x) \sin\left(\frac{ny}{R}\right) \right]$$

- So that the zero mode is Right-Handed !
- Had we chosen $\gamma_5 \Psi(-y) = -\Psi(y)$, i.e.

$$\Psi_R(-y) = -\Psi_R(y)$$
$$\Psi_L(-y) = \Psi_L(y)$$

Then the zero mode would be Left-Handed.

But how do we define "parity" in a circle ?

Orbifold Compactification:
 Identify points opposite in the circle ($y \sim -y$).

- Circle now reduced to segment, with "fixed points" at 0 and πR .
- Fields can be even or odd under $y \rightarrow -y$.
- Bulk fermions have chiral zero modes (either LH or RH).

Compact Extra Dimensions

Disclaimer: Theories with more than 4D are non-renormalizable.

- But Orbifolding breaks KK-number conservation ! Translation invariance broken in the y direction $\Rightarrow p_5$ not conserved !
- The presence of fixed points breaks KK number. By how much ?

Localized 4D operators at y = 0 and $y = \pi R$ generate KK-number-violating interactions. E.g:

$$S_{\text{loc.}} = \int d^4x \int_0^{\pi R} dy \, i \bar{\Psi}(x,y) \gamma_\mu D^\mu \Psi(x,y) \left(\frac{\delta(y) \frac{c_1}{\Lambda}}{\Lambda} + \frac{\delta(y-\pi R) \frac{c_2}{\Lambda}}{\Lambda} \right)$$

UV physics might not operate differently in y = 0 and $y = \pi R$.

If $c_1 = c_2 \Rightarrow$ KK-number violating interactions still respect KK-parity.
E.g. in (1) + (2) ↔ (3)

$$(-1)^{n_1+n_2+n_3} = 1$$

Conservation of KK parity \Rightarrow

Can produce level 2 KK modes in s-channel.

Electroweak precision constraints:

 $1/R \gtrsim 300 \text{ GeV}$ for 5D $1/R \gtrsim (400-600) \text{ GeV}$ for 6D

Current direct searches give similar bounds.

- Spectrum at each KK level is degenerate at tree level. Localized operators split the masses (one-loop generated).
- First KK mode in 5D model, with c_i 's computed at one-loop.

- Light KK modes \Rightarrow large cross sections.
- But, almost degenerate KK levels \Rightarrow little energy release.

Best mode $q\bar{q} \rightarrow Q_1Q_1 \rightarrow Z_1Z_1 + E_T \rightarrow 4\ell + E_T$ (Cheng, Matchev, Schmaltz '02).

Reach using this golden mode $q\bar{q} \rightarrow 4\ell + E_T$

- Production and Decay of Second KK Level:
- They couple to 2 zero modes through brane couplings (loop generated). (Datta, Kong, Matchev '05)

with $\Lambda R \gg 1$ and $c_i \sim O(1)$.

9 But has to compete with $2 \rightarrow 1 + 1$

Two Universal Extra Dimensions(Burdman, Dobrescu, Pontón '06):

- Proton decay is adequately suppressed.
- Number of generations can only be multiple of 3.
- Very different phenomenology:
 - Additional "adjoint" scalar: For each gauge boson $A_M \rightarrow A_\mu, A_5, A_6$.
 - In 5D, A_5 eaten by KK modes of gauge bosons.
 - In 6D, one combination survives in the spectrum.
 - It decays almost exclusively to $t\bar{t}$.
 - Is likely the LKP \Rightarrow scalar dark matter.
 - Mass of level 2 is $\sqrt{2}/R$ (instead of 2/R in 5D).

Spectrum: mass splittings from loops in the bulk:

1st KK Level (1,0)

2nd KK Level (1,1)

Typical diagram:

Other diagrams, with $W_{\mu}^{(1,1)}$ and $B_{\mu}^{(1,1)}$ also important.

- Large enhancement of $t\bar{t}$ at large invariant mass.
- Several resonances closely spaced.
- **•** Tevatron reach: for $10fb^{-1}$ can see resonances up to 800 GeV.
- Bound in compactification scale

$$1/R \le 600 {
m ~GeV}$$