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I. Colliders as tools

➩ Relativity and quantum mechanics lead to

∆p ∆t >
h̄

c

➨ We can only observe asymptotic states

➩ This is like studying classical
mechanics and how a car is made
looking at
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II. Collider parameters
❄ Center-of-mass energy 1 + 2 → X

s ≡ E2
CM ≡ (p1 + p2)2 =

{
(E1 + E2)2 in the c.m. frame ~p1 + ~p2 = 0,
m2

1 +m2
2 + 2(E1E2 − ~p1 · ~p2).

❄ Instantaneous luminosity L: the number of events/second is proportional to
the cross section

Nevents = L σ(s)

• beams are a collection of bunches with ni particles and crossing frequency
f

L ∝ n1n2f
a

where a is the transverse area
of the bunch.
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❄ Useful collider’s luminosity change of units

1033 cm−2 s−1 = 1 nb−1 s−1 ≈ 10 fb−1/year.

❄ e+e− colliders

Colliders
√
s (GeV) L δE/E f polar. L
(GeV) (cm−2s−1) (kHz) (km)

LEP I MZ 2.4× 1031 ∼ 0.1% 45 55% 26.7
SLC ∼ 100 2.5× 1030 0.12% 0.12 80% 2.9

LEP II ∼ 210 1032 ∼ 0.1% 45 26.7
BEPC up to 4.4 ∼ 1031 ∼ 6.× 10−4 1200 0.24

(TeV) (MHz)
ILC 0.5−1 2.5× 1034 0.1% 3 80, 60% 14-33

CLIC 3−5 ∼ 1035 0.35% 1500 80, 60% 33-53

❄ A limiting factor is the energy loss ∆E ∝ 1
R

(
E
m

)4
,

5



LISHEP-2006 Oscar Éboli

❄ Hadronic colliders

Colliders
√
s L δE/E f #/bunch L

(TeV) (cm−2s−1) (MHz) (1010) (km)
Tevatron 1.96 2.1× 1032 9× 10−5 2.5 p: 27, p̄: 7.5 6.28
HERA 314 1.4× 1031 0.1, 0.02% 10 e: 3, p: 7 6.34
LHC 14 1034 0.01% 40 10.5 26.66
SSC 40 1033 5.5× 10−5 60 0.8 87

VLHC 40−170 2× 1034 4.4× 10−4 53 2.6 233

❄ σproptoE2
CM LRA calL2 grows as ' E2

CM

❄ LHC: time between collisions 25 ns.

❄ At luminosity 1034 cm−2 s−1 there will be 109 interactions/s =⇒ ' 25
collisions per bunch crossing (pileup)

6



LISHEP-2006 Oscar Éboli

III. e+e− colliders

❅ Main advantages

• e+e− interactions are well understood in the SM.

• the e+e− systems has zero charge, lepton number, etc =⇒ good to
produce new states.

• beam properties are well understood =⇒ scattering kinematics is well
constrained.

• If CM coincides with the lab frame =⇒ the total
√
s can be used.

• It is possible to polarize the initial beams.
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❅ Main disadvantages

• Large synchrotron radiation
=⇒ linear machines

• e+e− couples mainly to spin-1 states
in the s-channel.

• The energy losses due to
bremstrahlung

• At high energies there can be large
energy losses due to beam-beam
interaction (beamstrahlung).

• This leads toR(s) =
∫
dτ dL

dτ σ(ŝ) with
τ =

√
ŝ/
√
s
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❅ The effect of ISR can
be large, e.g., at LEP2
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❅ Main processes
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IV. Hadron colliders
✾ Protons are composite of quarks and gluons and they are much heavier
than electrons.

✾ The main differences are

• Higher CM energies since
mP >> me

• Higher luminosities can be
achieved

• Protons interact strongly
=⇒ large cross sections

(σtotal ' 100 mb).
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✾ The collisions are messier



LISHEP-2006 Oscar Éboli
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✾ QCD factorization theorem: σ for large momentum transfer is the
convolution of the parton distribution functions with the parton level cross
section. See Swain’s lectures.

σ(AB → F X) =
∑
a,b

∫
dx1dx2 fa/A(x1, Q

2)fb/B(x2, Q
2) σ̂(ab→ F ),

• fb/B(x,Q2)dx is the number of partons carrying a fraction x of the hadron B
momentum. Q2 is a characteristic scale.
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V. Detectors

✯ To gather information =⇒ modern detectors are very complex to measure
position, time, momentum, energy, ...
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✯ The signal of a particle depends on its decay length

d = (β cτ)
E

m
≈ (300 µm)

( τ

10−12 s

) E

m
,

✯ A few possibilities

• Quarks/gluons hadronize in th ∼ 1/ΛQCD ≈ 1/(200 MeV) ≈ 3.3× 10−24 s.

energetic q, g give rise to jets
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• Stable particles (p, p̄, e±, γ) will leave a footprint in the detector: energy
deposity in CAL and/or hits on the tracking system
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• Stable particles (p, p̄, e±, γ) will leave a footprint in the detector: energy
deposity in CAL and/or hits on the tracking system

• Quasi-stable particle (τ >∼ 10−10 s and energetic) behave like the stable
particles, e.g. n,Λ,K0

L, ... µ
±, π±,K±, ...

• Short lived resonances decay instantaneously: W± and Z (10−25 s); π0, ρ,
. . .

• displaced vertex: B0,±, D0,±, τ±, (τ ∼ 10−12 s; cτ ∼ 100 µm). K0
S → π+π−

with cτ ∼ 2.7 cm.

• Neutral particles with just weak interaction leave no signal in the detector (ν,
LSP)
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Leptons Vertexing Tracking ECAL HCAL Muon Cham.
e± × ~p E × ×
µ± × ~p

√ √
~p

τ±
√
×

√
e± h±; 3h± µ±

νe, νµ, ντ × × × × ×
Quarks
u, d, s ×

√ √ √
×

c→ D
√ √

e± h’s µ±

b→ B
√ √

e± h’s µ±

t→ bW± b
√

e± b+ 2 jets µ±

Gauge bosons
γ × × E × ×
g ×

√ √ √
×

W± → `±ν × ~p e± × µ±

→ qq̄′ ×
√ √

2 jets ×
Z0 → `+`− × ~p e± × µ±

→ qq̄ (bb̄)
√ √

2 jets ×
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✯ Pictorically
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✯ Typical uncertainties in measurements at LHC (ATLAS)

✪ Vertexing: impact parameter is
an important handle

✪ ∆d0 = 11⊕ 73

(p
T

/ GeV)
√

sin θ
(µm),

✪ ∆z0 = 87⊕ 115

(p
T

/ GeV)
√

sin3 θ
(µm)

✪ Tracking: |η`| <∼ 2.5 and |ηh| <∼ 5

✪ ECAL: ∆E
E = 10%√

E/GeV
⊕ 0.4% ✪ HCAL: ∆E

E = 80%√
E/GeV

⊕ 15%
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VI. Kinematics (at hadron colliders)

✺ Evaluating cross section in a hadron-hadron machine requires

σ =
∫
dx1dx2

∑
subp

fa1/p(x1) fa2/p̄(x2)
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VI. Kinematics (at hadron colliders)

✺ Evaluating cross section in a hadron-hadron machine requires

σ =
∫
dx1dx2

∑
subp

fa1/p(x1) fa2/p̄(x2)

1
2ŝ(2π)3n−4

∫
dΦn(x1PA + x2PB; p1 . . . pn)Θ(cuts)

∑
|M|2(a1a2 → b1 . . . bn)

✺the CM momentum '
√
s/2(x1 + x2, 0, 0, x1 − x2) (LAB 6= CM)

✺ In general we can write E(1, β sin θ cosφ, β sin θ sinφ, β cos θ) , and

y ≡ 1
2

log
E + pz

E − pz
−→ η =

1
2

log
1 + cos θ
1− cos θ

for β → 1

rapidity differences are invariant under boosts along collision axis
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✺ The CM and lab frames are related by

y = y∗ + yc.m. = y∗ +
1
2

log
x1

x2
,

where yc.m. is the CM rapidity in the lab frame.

✺ Change of variables: x1,2 =
√
τ e±ycm that leads to

∫ 1

τ0

dx1

∫ 1

τ0/x1

dx2 =
∫ 1

τ0

dτ

∫ −1
2 ln τ

1
2 ln τ

dycm

✺ The CM energy of the subprocesses is ŝ = x1x2s = τs

21



LISHEP-2006 Oscar Éboli�
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�
�Phase space

✺ The sum of final states is

dΦn(ab→ 1 . . . n) ≡ δ4(pa + pb − p1 − . . .− pn)
n∏

i=1

d3~pi

2Ei

✺ 3n− 4 integrals.
✺ With azimuthal symmetry
=⇒ 3n− 5 integrals

✺ In a hadron collider we have 2
extra integrals (x1,2)
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✺ The sum of final states is

dΦn(ab→ 1 . . . n) ≡ δ4(pa + pb − p1 − . . .− pn)
n∏

i=1

d3~pi

2Ei

✺ 3n− 4 integrals.
✺ With azimuthal symmetry
=⇒ 3n− 5 integrals

✺ In a hadron collider we have 2
extra integrals (x1,2)

n 3n− 3
2 3
3 6
4 9

. . . . . .
8 21
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�
�Two-body kinematics

✺ The two-body phase space is (Show it!)

dΦ2 ≡ δ4 (P − p1 − p2)
d3~p1

2E1

d3~p2

2E2

=
1
4
|~pcm

1 |√
s
dΩ1 =

1
4
|~pcm

1 |√
s
d cos θ1dφ1.

where

|~pcm
1 | = |~pcm

2 | = λ1/2(s,m2
1,m

2
2)

2
√
s

, Ecm
1 =

s+m2
1 −m2

2

2
√
s

, Ecm
2 =

s+m2
2 −m2

1

2
√
s

,

with λ(x, y, z) = (x− y − z)2 − 4yz = x2 + y2 + z2 − 2xy − 2xz − 2yz
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✺ The Mandelstan variables for 2 → 2 scattering process pa + pb → p1 + p2 are

ŝ = (pa + pb)2 = (p1 + p2)2 = E2
cm,

t̂ = (pa − p1)2 = (pb − p2)2 = m2
a +m2

1 − 2(EaE1 − pap1 cos θa1),

û = (pa − p2)2 = (pb − p1)2 = m2
a +m2

2 − 2(EaE2 − pap2 cos θa2).

with ŝ+ t̂+ û = ma2 +m2
b +m2

1 +m2
2.

✺ We can also write

dΦ2 =
1
4

dt dφ1

s λ1/2 (1,m2
a/s,m

2
b/s)

.
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�
�Three-body kinematics

✺ The three-body phase space is

dΦ3(ab→ 123) ≡ δ4 (pa + pb − p1 − p2 − p3)
d3~p1

2E1

d3~p2

2E2

d3~p3

2E3

✺ One choice is to write as a chain of two-body PS (Show it!)

dΦ3(ab→ 123) = dΦ2(ab→ 1X) × dM2
X × dΦ2(X → 23)

where X is the composite system 2 + 3 and M2
X = (p2 + p3)2

✺ Another possibility is

dΦ3(ab→ 123) =
d3~p1

2E1
× dΦ2(a+ b− 1 → 2 + 3)
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✺ We can write
d3~p

E
= dpxdpy

dpz

E
= pTdpTdφ

dpz

E
or writing the momentum as a function of the rapidity

pµ = (ET cosh η, pT sinφ, pT cosφ,ET sinh η), with ET =
√
p2

T +m2

the phase space element then can be expressed as

d3~p

E
= pTdpTdφ dη = ETdETdφ dη

26
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�
�Multiparticle Phase Space

✺ The choice of variables is dictated by the process being analyzed,

✺ For instance, uū→ g(p1) + Z(→ e+(p2) + e−(p3). There is a peak on
m2

23 = (p2 + p3)2, so m23 should be one of the integration variables.
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�
�Multiparticle Phase Space

✺ The choice of variables is dictated by the process being analyzed,

✺ For instance, uū→ g(p1) + Z(→ e+(p2) + e−(p3). There is a peak on
m2

23 = (p2 + p3)2, so m23 should be one of the integration variables.

✺ For instance, in e+e− → e+e−γ∗γ∗ → e+e−µ+µ−, the bulk of σ comes from
e± scattered at large rapidities =⇒ we should use as dηe±.

✺ General recursion relation: let X = 1 + . . .+ j and Y = (j+ 1) + . . .+n then

dΦn(ab→ 1 . . . n) = dΦ2(ab→ XY ) × dM2
X dM2

Y × dΦj(X → 1 . . . j) ×
dΦn−j(Y → j + 1 . . . n)
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✺ It is possible to generate “generic” phase spaces

t-channel
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VII. Evaluation of scattering amplitudes
❅ We also need to evaluate

∑
|M|2(a1a2 → b1 . . . bn) with M =

∑f
i=1Mi .

❅ If f (n) is large the “trace technique” becomes useless since we have to
evaluate f(f + 1)/2 cross terms Re(M∗

iMj).

❅ It then becomes advantageous to numerically evaluate Mi =⇒ complexity
grows linearly with f .

❅ One efficient technique is to work in helicity basis
|M|2 =

∑
λa...λn

|M(λa . . . λn)|2
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VII. Evaluation of scattering amplitudes
❅ We also need to evaluate

∑
|M|2(a1a2 → b1 . . . bn) with M =

∑f
i=1Mi .

❅ If f (n) is large the “trace technique” becomes useless since we have to
evaluate f(f + 1)/2 cross terms Re(M∗

iMj).

❅ It then becomes advantageous to numerically evaluate Mi =⇒ complexity
grows linearly with f .

❅ One efficient technique is to work in helicity basis
|M|2 =

∑
λa...λn

|M(λa . . . λn)|2

❅ For fermions

in the representation γ5 =
(
−1 0

0 1

)
we write ψ =

(
ψ−
ψ+

)
where ψ− and ψ+ are Weyl spinors of negative and positive helicity.
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❅ For instance, u-spinor with chiral components u(p, σ)± =
√
p0 ± σ|p| χσ(p) ,

where

χ+(p) =
1√

2|p|(|p|+ pz)

(
|p|+ pz

px + ipy

)
; χ−(p) =

1√
2|p|(|p|+ pz)

(
−px + ipy

|p|+ pz

)
.

❅ The HELAS package has all elements need to evaluate Feynman diagrams
defined as fortran routines. For instance, an incoming u(p,NH)-spinor is
given by a simple subroutine call,

call IXXXXX(P,FMASS,NH,+1,PSI)

to compute the spinor v change +1 → −1.
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❅ For instance, u-spinor with chiral components u(p, σ)± =
√
p0 ± σ|p| χσ(p) ,

where

χ+(p) =
1√

2|p|(|p|+ pz)

(
|p|+ pz

px + ipy

)
; χ−(p) =

1√
2|p|(|p|+ pz)

(
−px + ipy

|p|+ pz

)
.

❅ The HELAS package has all elements need to evaluate Feynman diagrams
defined as fortran routines. For instance, an incoming u(p,NH)-spinor is
given by a simple subroutine call,

call IXXXXX(P,FMASS,NH,+1,PSI)

to compute the spinor v change +1 → −1.

❅ Outgoing spinors are generate by call IXXXXX(P, FMASS, NH,±1, PSI)



LISHEP-2006 Oscar Éboli

❅ For instance, u-spinor with chiral components u(p, σ)± =
√
p0 ± σ|p| χσ(p) ,

where

χ+(p) =
1√

2|p|(|p|+ pz)

(
|p|+ pz

px + ipy

)
; χ−(p) =

1√
2|p|(|p|+ pz)

(
−px + ipy

|p|+ pz

)
.

❅ The HELAS package has all elements need to evaluate Feynman diagrams
defined as fortran routines. For instance, an incoming u(p,NH)-spinor is
given by a simple subroutine call,

call IXXXXX(P,FMASS,NH,+1,PSI)

to compute the spinor v change +1 → −1.

❅ Outgoing spinors are generate by call IXXXXX(P, FMASS, NH,±1, PSI)

❅ the polarization vector of incoming vector bosons is
call VXXXXXX(P, VMASS, NHEL,−1, VC)
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❅ The HELAS system contains
external line routines

External line Subroutine

I n Fermion IXXXXX
Out Fermion OXXXXX

Vector Boson VXXXXX

Scalar Boson SXXXXX
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❅ The HELAS system contains
external line routines

External line Subroutine

I n Fermion IXXXXX
Out Fermion OXXXXX

Vector Boson VXXXXX

Scalar Boson SXXXXX

❅ as well as the renormalizable
vertices

Vertex Inputs Output Subroutine

FFV FFV Amplitude IOVXXX
FF V JIOXXX, J3XXXX
FV F FVIXXX, FVOXXX

FFS FFS Amplitude IOSXXX
FF S HIOXXX
FS F FSIXXX, FSOXXX

VVV VVV Amplitude VVVXXX
VV V JVVXXX

VVS VVS Amplitude VVSXXX
VS V JVSXXX
VV S HVVXXX

VSS VSS Amplitude VSSXXX
SS V JSSXXX
VS S HVSXXX

SSS SSS Amplitude SSSXXX
SS S HSSXXX

VVVV VVVV Amplitude WWWWXX, W3W3XX
VVV V JWWWXX, JW3WXX

VVSS VVSS Amplitude VVSSXX
VSS V JVSSXX
VVS S HVVSXX

SSSS SSSS Amplitude SSSSXX
SSS S HSSSXX

31
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❅ Example: W+W− → tt̄
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❅ Example: W+W− → tt̄

C...external lines
C

CALL VXXXXX(PWM,WMASS,NHWM,-1 , WM)
CALL VXXXXX(PWP,WMASS,NHWP,-1 , WP)
CALL OXXXXX(PT ,TMASS,NHT ,+1 , FO)
CALL IXXXXX(PTB,TMASS,NHTB,-1 , FI)

C
C...evaluating the Feynman diagrams
C

CALL J3XXXX(FI,FO,GAU,GZU,ZMASS,ZWIDTH , J3)
CALL VVVXXX(WP,WM,J3,GW , AMPS)
CALL FVIXXX(FI,WM,GWF,0.,0. , FVI)
CALL IOVXXX(FVI,FO,WP,GWF , AMPT)
CALL HIOXXX(FI,FO,GCHT,HMASS,HWIDTH , HTT)
CALL VVSXXX(WM,WP,HTT,GWWH , AMPH)

32
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❅ The package MADGRAPH can be used to generate SM and SUSY
amplitudes!

• MADGRAPH can generate 2 → 8 processes

• MADGRAPH already sums over polarizations and colors

• MADGRAPH produces a ps file with the Feynman diagrams

• The package MADEVENT goes further and produces a complete Monte
Carlo

• Interfaces for PYTHIA, HERWIG, and ROOT are available

http://madgraph.hep.uiuc.edu/
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❅ There are many more packages that evaluate scattering amplitudes:

• CompHEP is a complete system for unpolarized scattering of up to four
particles in the final state. It features convenient diagram generation and
calculation of the squared matrix element as well as efficient Monte Carlo
integration.

• ALPHA implements an efficient algorithm for calculating Born amplitudes for
many particles in the final state.

• O’Mega is an optimizing matrix element compiler.

• WHIZARD calls O’Mega, CompHEP, or MADGRAPH to calculate complete
matrix elements matrix elements and creates an unweighted event
generator.
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Monte Carlo integration

✺ To obtain σ we need to evaluate Nint = 3n− 2 integrals.

✺ The uncertainty of numerical methods grows fast with Nint for K
evaluations of the integrand

.

Method 1-d uncertainty Nint uncertainty
trapezoidal rule K−2 K−2/Nint

Simpson K−4 K−4/Nint

Gauss K−2m+1 K−(2m+1)/Nint



LISHEP-2006 Oscar Éboli

Monte Carlo integration

✺ To obtain σ we need to evaluate Nint = 3n− 2 integrals.

✺ The uncertainty of numerical methods grows fast with Nint for K
evaluations of the integrand

.

Method 1-d uncertainty Nint uncertainty
trapezoidal rule K−2 K−2/Nint

Simpson K−4 K−4/Nint

Gauss K−2m+1 K−(2m+1)/Nint

Monte Carlo K−1/2 K−1/2

✺ It is usually advantageous to use Monte Carlo.
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Basic idea:

• Initially we map the integration region into a 3n− 2 dimensional hypercube
(0 ≤ ri ≤ 1)

dx1dx2dΦn = J
3n−2∏
i=1

dri

• Now take K sets {ri} of 3n− 2 random numbers each and a good
approximation is

σ ≈ 1
K

∑
{ri}

J
2ŝ(2π)3n−4

∑
subprocesses

f(x1)f(x2)
∑
|M|2 Θ(cuts) ,

which gives the correct limit for K →∞

✺ The variance of I =
∫
dxg(x) is

∫
dx(I − g(x))2/

√
K
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Basic idea:

• Initially we map the integration region into a 3n− 2 dimensional hypercube
(0 ≤ ri ≤ 1)

dx1dx2dΦn = J
3n−2∏
i=1

dri

• Now take K sets {ri} of 3n− 2 random numbers each and a good
approximation is

σ ≈ 1
K

∑
{ri}

J
2ŝ(2π)3n−4

∑
subprocesses

f(x1)f(x2)
∑
|M|2 Θ(cuts) ,

which gives the correct limit for K →∞

✺ The variance of I =
∫
dxg(x) is

∫
dx(I − g(x))2/

√
K (VEGAS, BASES, etc)
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✺ Example: e+e− → 2 particles in the final state

dΦ2 =
1
4
|~pcm

1 |√
s
d cos θ1dφ1 =

1
4
|~pcm

1 |√
s
× 4π × dr1dr2

with cos θ1 = −1 + 2r1 and φ1 = 2πr2. More, I can construct the (massless)
momentum with this

p1 =
√
s

2
(1, sin θ1 cosφ1, sin θ1 sinφ1, cos θ1)

p2 =
√
s

2
(1, − sin θ1 cosφ1, − sin θ1 sinφ1, − cos θ1)
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✺ General comments:

• The change of variable should produce a constant function to reduce the
fluctuations.

• It is easy to construct the momenta pi and check the acceptance cuts
Θ(cuts);

• Each event (set of random numbers) is associated to a weight factor

w =
∑
{ri}

J
2ŝ(2π)3n−4

∑
subprocesses

f(x1)f(x2)
∑
|M|2 Θ(cuts) ,

• It is easy to generate distributions dσ/dz: Given the bin width ∆z one adds
w · wgt/∆z to the bin corresponding to z. wgt ' 1/K

• It is possible to generate unweighted events.
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