
Electroweak Theory

and Higgs Physics

Preliminary Version

Chris Quigg
Fermilab

quigg@fnal.gov

LISHEP 2006 · Rio de Janeiro

http://boudin.fnal.gov/AcLec/AcLecQuigg.html

Chris Quigg Electroweak Theory · LISHEP 2006 1bis



A Decade of Discovery Past . . .
� Electroweak theory → law of nature

[Z, e+e−, p̄p, νN , (g − 2)µ, . . . ]

� Higgs-boson influence observed in the vacuum

[EW experiments]

� Neutrino flavor oscillations: νµ → ντ ,
νe → νµ/ντ [ν�, νatm, reactors]

� Understanding QCD

[heavy flavor, Z0, p̄p, νN , ep, ions, lattice]

� Discovery of top quark [p̄p]

� Direct CP violation in K → ππ [fixed-target]

� B-meson decays violate CP [e+e− → BB̄]

� Flat universe dominated by dark matter, energy

[SN Ia, CMB, LSS]

� Detection of ντ interactions [fixed-target]

� Quarks & leptons structureless at TeV scale

[mainly colliders]
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Goal: Understanding the Everyday

� Why are there atoms?

� Why chemistry?

� Why stable structures?

� What makes life possible?

What would the world be like
without a (Higgs) mechanism to hide
electroweak symmetry and give
masses to the quarks and leptons?
Consider the effects of all the
SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge
symmetries.
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Searching for the mechanism of
electroweak symmetry breaking,
we seek to understand

why the world is the way it is.

This is one of the deepest
questions humans have ever
pursued, and

it is coming within the reach of
particle physics.
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Tevatron Collider is running now,

breaking new ground in sensitivity
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Tevatron Collider in a Nutshell

980-GeV protons, antiprotons

(2π km)

frequency of revolution ≈ 45 000 s−1

392 ns between crossings

(36 ⊗ 36 bunches)

collision rate = L · σinelastic ≈ 107 s−1

c ≈ 109 km/h; vp ≈ c− 495 km/h

Record Linit = 1.64 × 1032 cm−2 s−1

[CERN ISR: pp, 1.4]

Maximum p̄ at Low β: 1.661 × 1012
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The LHC will operate soon, breaking

new ground in energy and sensitivity

30 June 200530 June30 June30 June 200520052005Gigi Rolandi - CERNGigi RolandiGigi RolandiGigi Rolandi - CERN - CERN - CERN
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LHC in a nutshell

7-TeV protons on protons (27 km);

vp ≈ c− 10 km/h

Novel two-in-one dipoles (≈ 9 teslas)

Startup: 43 ⊗ 43 → 156 ⊗ 156

bunches, L ≈ 6 × 1031 cm−2 s−1

Early: 936 bunches,

L∼> 5 × 1032 cm−2 s−1 [75 ns]

Next phase: 2808 bunches,

L → 2 × 1033 cm−2 s−1

25 ns bunch spacing

Eventual: L∼> 1034 cm−2 s−1:

100 fb−1/year
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Tentative Outline . . .

� SU(2)L ⊗ U(1)Y theory

Gauge theories

Spontaneous symmetry breaking

Consequences: W±, Z0/NC, H, mf?

Measuring sin2 θW in νe scattering

GIM / CKM

� Phenomena at tree level and beyond

Z0 pole

W mass and width

Vacuum energy problem
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. . . Outline

� The Higgs boson and the 1-TeV scale

Why the Higgs boson must exist

Higgs properties, constraints

How well can we anticipate MH?

Higgs searches

� The problems of mass

� The EW scale and beyond

Hierarchy problem

Why is the EW scale so small?

Why is the Planck scale so large?

� Outlook
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Our picture of matter

Pointlike constituents (r < 10−18 m)

(
u

d

)

L

(
c

s

)

L

(
t

b

)

L

(
νe

e−

)

L

(
νµ

µ−

)

L

(
ντ

τ−

)

L

Few fundamental forces, derived from

gauge symmetries

SU(3)c ⊗ SU(2)L ⊗ U(1)Y

Electroweak symmetry breaking

Higgs mechanism?
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SYMMETRIES =⇒ INTERACTIONS

Phase Invariance (Symmetry)

in Quantum Mechanics

QM STATE: COMPLEX SCHRÖDINGER WAVE

FUNCTION ψ(x)

OBSERVABLES

〈O〉 =
∫
dnxψ∗Oψ

ARE UNCHANGED

UNDER A GLOBAL PHASE ROTATION

ψ(x) → eiθψ(x)

ψ∗(x) → e−iθψ∗(x)

• Absolute phase of the wave function cannot be

measured (is a matter of convention).

• Relative phases (interference experiments) are

unaffected by a global phase rotation.

NEW

ORIGINALθ
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GLOBAL ROTATION — SAME EVERYWHERE

MIGHT WE CHOOSE ONE PHASE CONVENTION

IN RIO AND ANOTHER IN BATAVIA?

A DIFFERENT CONVENTION AT EACH POINT?

ψ(x) → eiqα(x)ψ(x)
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THERE IS A PRICE.

Some variables (e.g., momentum) and the

Schrödinger equation itself contain derivatives.

Under the transformation

ψ(x) → eiqα(x)ψ(x)

the gradient of the wave function transforms as

∇ψ(x) → eiqα(x)[∇ψ(x)+iq(∇α(x))ψ(x)]

The ∇α(x) term spoils local phase invariance.

TO RESTORE LOCAL PHASE INVARIANCE . . .

Modify the equations of motion and observables.

Replace ∇ by ∇ + iq ~A

“Gauge-covariant derivative”

If the vector potential ~A transforms under local

phase rotations as

~A(x) → ~A′(x) ≡ ~A(x) −∇α(x),

then (∇ + iq ~A)ψ → eiqα(x)(∇ + iq ~A)ψ and

ψ∗(∇ + iq ~A)ψ is invariant under local rotations.
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NOTE . . .

• ~A(x) → ~A′(x) ≡ ~A(x)−∇α(x) has the form of

a gauge transformation in electrodynamics.

• The replacement ∇ → (∇ + iq ~A) corresponds

to ~p→ ~p− q ~A

FORM OF INTERACTION IS DEDUCED

FROM LOCAL PHASE INVARIANCE

=⇒ MAXWELL’S EQUATIONS

DERIVED

FROM A SYMMETRY PRINCIPLE

QED is the gauge theory based on

U(1) phase symmetry
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GENERAL PROCEDURE

• Recognize a symmetry of Nature.

• Build it into the laws of physics.

(Connection with conservation laws)

• Impose symmetry in stricter (local) form.

=⇒ INTERACTIONS

• Massless vector fields (gauge fields)

• Minimal coupling to the conserved current

• Interactions among the gauge fields, if

symmetry is non-Abelian

Posed as a problem in mathematics, construction of

a gauge theory is always possible (at the level of a

classical L; consistent quantum theory may require

additional vigilance).

Formalism is no guarantee that the gauge symmetry

was chosen wisely.
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The Crystal World
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The Crystal World
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The Crystal World
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The Perfect World
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The Real World
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Massive Photon? Hiding Symmetry

Recall 2 miracles of superconductivity:

� No resistance

� Meissner effect (exclusion of B)

Ginzburg–Landau Phenomenology

(not a theory from first principles)

normal, resistive charge carriers . . .

. . .+ superconducting charge carriers

Order Parameter  ψ
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Order Parameter  ψ

ψ
0

(a) (b)

B = 0:

Gsuper(0) = Gnormal(0) + α |ψ|2 + β |ψ|4

T > Tc : α > 0 〈|ψ|2〉0 = 0

T < Tc : α < 0 〈|ψ|2〉0 6= 0
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NONZERO MAGNETIC FIELD

Gsuper(B) = Gsuper(0) +
B

2

8π
+

1

2m∗

∣∣∣∣−i~∇ψ − e∗

c
Aψ

∣∣∣∣
2

e∗ = −2

m∗



 of superconducting carriers

Weak, slowly varying field

ψ ≈ ψ0 6= 0, ∇ψ ≈ 0

Variational analysis =⇒

∇2
A − 4πe∗

m∗c2
|ψ0|2 A = 0

wave equation of a massive photon

Photon— gauge boson — acquires mass

within superconductor

origin of Meissner effect
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Meissner effect levitates Lederman, Snowmass 2001
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Formulate electroweak theory

three crucial clues from experiment:

� Left-handed weak-isospin doublets,


 νe

e




L


 νµ

µ




L


 ντ

τ




L

and

 u

d′




L


 c

s′




L


 t

b′




L

;

� Universal strength of the (charged-current) weak

interactions;

� Idealization that neutrinos are massless.

First two clues suggest SU(2)L gauge symmetry
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A theory of leptons

L =


 νe

e




L

R ≡ eR

weak hypercharges YL = −1, YR = −2

Gell-Mann–Nishijima connection, Q = I3 + 1
2Y

SU(2)L ⊗ U(1)Y gauge group ⇒ gauge fields:

? weak isovector ~bµ, coupling g

? weak isoscalar Aµ, coupling g′/2

Field-strength tensors

F `
µν = ∂νb

`
µ − ∂µb

`
ν + gεjk`b

j
µb

k
ν , SU(2)L

and

fµν = ∂νAµ − ∂µAν , U(1)Y
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Interaction Lagrangian

L = Lgauge + Lleptons ,

with

Lgauge = −1
4F

`
µνF

`µν − 1
4fµνf

µν ,

and

Lleptons = R iγµ

(
∂µ + i

g′

2
AµY

)
R

+ L iγµ

(
∂µ + i

g′

2
AµY + i

g

2
~τ ·~bµ

)
L.

Electron mass term

Le = −me(ēReL + ēLeR) = −meēe

would violate local gauge invariance Theory has

four massless gauge bosons

Aµ b1µ b2µ b3µ

Nature has but one (γ)
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Hiding EW Symmetry

Higgs mechanism: relativistic generalization of

Ginzburg-Landau superconducting phase transition

� Introduce a complex doublet of scalar fields

φ ≡


 φ+

φ0


 Yφ = +1

� Add to L (gauge-invariant) terms for interaction

and propagation of the scalars,

Lscalar = (Dµφ)†(Dµφ) − V (φ†φ),

where Dµ = ∂µ + i g′

2 AµY + i g
2~τ ·~bµ and

V (φ†φ) = µ2(φ†φ) + |λ| (φ†φ)2

� Add a Yukawa interaction

LYukawa = −ζe
[
R(φ†L) + (Lφ)R

]
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� Arrange self-interactions so vacuum corresponds

to a broken-symmetry solution: µ2 < 0

Choose minimum energy (vacuum) state for

vacuum expectation value

〈φ〉0 =


 0

v/
√

2


 , v =

√
−µ2/ |λ|

Hides (breaks) SU(2)L and U(1)Y

but preserves U(1)em invariance

Invariance under G means eiαG〈φ〉0 = 〈φ〉0, so G〈φ〉0 = 0

τ1〈φ〉0 =
0 1

1 0

0

v/
√

2
=

v/
√

2

0
6= 0 broken!

τ2〈φ〉0 =
0 −i

i 0

0

v/
√

2
=

−iv/
√

2

0
6= 0 broken!

τ3〈φ〉0 =
1 0

0 −1

0

v/
√

2
=

0

−v/
√

2
6= 0 broken!

Y 〈φ〉0 = Yφ〈φ〉0 = +1〈φ〉0 =
0

v/
√

2
6= 0 broken!
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Examine electric charge operator Q on the
(electrically neutral) vacuum state

Q〈φ〉0 = 1
2
(τ3 + Y )〈φ〉0

= 1
2

Yφ + 1 0

0 Yφ − 1
〈φ〉0

=
1 0

0 0

0

v/
√

2

=
0

0
unbroken!

Four original generators are broken

electric charge is not

� SU(2)L ⊗ U(1)Y → U(1)em (will verify)

� Expect massless photon

� Expect gauge bosons corresponding to

τ1, τ2,
1
2 (τ3 − Y ) ≡ K

to acquire masses
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