Clarens Web Services @
Framework

LISHEP 2004, Feb 2

Grid Architecture, Infrastructure & Middleware

Conrad Steenberg, Julian Bunn, Harvey
Newman, Michael Thomas, Frank van
Lingen

California Institute of Technology

Developed as part of the

Particle Physics DataGrid

Overview

* Grids
* Web services

e Standards

*Clarens architecture
*|mplementations

*Service tutorial

*Security and Virtual Organizations

Background

Grid |deal

A computational grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access

to high-end-computational-capabilities: Kesselman & Foster, 1998

*Web Services

*Document web vs. Programmatic web

*Leverages weak coupling, simplicity, and standardized approach of
the web

*Mostly implies XML messaging over HTTP
*NOT server-generated HTML pages
*Grid does not imply an implementation
*Web services form an ideal vehicle for implementing Grids

Standards

e Commoditized standards hallmark of web services
*SOAP for messaging
*WSDL service descriptions
*SSL encryption, key exchange (PKI/X509 certificates)
*HTTP for transport mechanism
*UDDI for service discovery (¥)

*This is not enough for building real applications

*Need a framework for providing services (library, conventions)
*Distributed security, administration
*Not only clients and servers, but truly distributed system

Clarens architecture

Thin, high performance web services layer to allow
programmatic access to computational resources

* Allows lightweight clients up to heavyweight servers to access
services

* Use web service standards, allows commaodity clients
* Strong focus on security

*X509 certificates for authentication, optional SSL encryption
*Authorization at resource level (method ACLs, VO ACLs)
*Logging of requests and responses

D Implementations
*Two implementations

*Multi-process Apache server using embedded Python interpreter
(mod_python) and C/C++ - used for tutorial

*Multithreaded Tomcat serviet container with own or Apache web
server using Java (unreleased)

* Additional standards supported

*GSI authentication, HTTP Basic authentication (both also using
X509 centificates)

*XML-RPC for messaging
*Clients available:

* Java (PDA, workstation)
* Javascript (Browser)

a7 Server Notes

*Each RPC is handled by own server process
*Crashing module doesn't affect neighbours
*Long-running requests does not block server
*Leverages SMP when available
*Server farm with load-balancing can appear as single virtual server

*Stateless protocol

*Clients do not hold connection

*Session data stored in DB

*Clients can survive server restarts, sees temporary server
unavailability

57 Service tutorial

*Server installation as root or ordinary user
*See http://clarens.sf.net

*Use Python OO “interpreted” language
*http://www.python.org

*Use mod_python interface to Apache web server
*http://www.modpython.org

*Powerful database access with e.g.
*Berkeley DB - http://www.sleepycat.com (session management)
*MySQL - http://www.mysql.com
*SQLite - http://www/sqlite.org

*Use C/C++ extensions where speed is needed

*Directory name determines root of method name
e.g. system. methods reside in system directory

*Users can install modules under login directory
*This can be disabled if needed!

{root} /system/__init__.py system.auth
system.logout
system.*

[flile/__init__.py file.read
file.md5
file.*

/proxy/_init.py proxy.store
proxy.retrieve
proxy.*

{home/user/clarens} /analysis/__init__.py

~user.analysis.init
~user.analysis.chi2
~user.analysis.*

ftransform/__init.py

~user.transform.init
~user.transform.fft
~user.transform.*

Import support modules:
from clarens util import *
from mod python import apache

Define function:
def echo(req,method name,args):

Construct response:
response = build response(req,method name,args)

Write response:
write response(req, response)

Return:
return apache.OK

Service Registration

F|Ie echo/__init__.py:
e|_et the world know about our new method:

methods list={'echo':echo}

*Method name: ‘echo'

*Method object: echo

*Method signature:

methods sig= {'echo':['string,string']}

Complete example

from clarens util import *

from mod python import apache

def echo(req,method name,args):
response = build response(req,method name,args)
write response(req, response)
return apache.OK

methods list={'echo':echo}

methods sig= {'echo':['string,string']}

Error handling

se build_fault() to construct an exception:

def echo(req,method name,args):
try:
response = build response(req,method name,args)
except:
response = build fault(req,method name,
apache.HTTP BAD REQUEST,
"Bad request echo %s"%(args))
write response(req, response)
return apache.OK

methods list={'echo':echo}

methods sig= {'echo':['string,string']}

More useful method

se build_fault() to construct an exception:
def get dn(req,method name,args):
try:

response = build response(req,method name,
req.clarens dn)

except:
response = build fault(req,method name,
apache.HTTP BAD REQUEST,
"Bad request %s"%(method name))
write response(req, response)
return apache.OK

methods list={'echo':echo,
'‘DN' :get dn}

methods sig= {'echo':['string,string'],
'‘DN' :['string,array']}

WSDL Service Description

Prewously specified XML-RPC method signatures
WSDL much more complete format

Add to file __init__.py:

aunn

methods wsdl=
<?xml version="1.0" encoding="UTF-8"7>

<wsdl:definitions targetNamespace="urn:echo"

aurnn

Debugging

Print debugging output:
err msg(“Output message”)

* Server error log:
[Tue Feb 10 03:21:25 2004] [notice] Output message

Send HTML formatted tracebacks to client:
import cgitb; cgitb.enable()

*Use command-line Python debugger

Add line to mod_python configuration file:
PythonEnablePdb ON

Start Apache server with only one process:
httpd -X -DONE PROCESS

*Verifies certificate chain up to a list of accepted Certificate Authority certificates

*Client identified internally by the certificate distinguished name (DN) - uniqueness
ensured by CA

* Authorization done using an internal VO

*VO consists of a hierarchy of groups and users
*Does not need to store client certificates, uses Dns

*VO data stored in DB

DNI1,DN2... J=p Patof mpp SUPER ADMIN GROUP I Can create
can add usersto \ groups

Specified in server Can add users
setup file to admin group GROUP N:

ADMIN GROUP || =————pp- Member DN1
Can add users Member DN2

to admin group

*ACLs bootstrapped from .clarens_access files in module directories
*Store in DB, can be administered remotely
*Based on model of Apache .htaccess files

* E.g. for system.auth() method which is required for login:

* Order allow, deny
* Allow all in specified group(s) or list of DNs to access method

* Unless member of group(s) in deny list, or DN in deny list
* Similar for order deny, allow
* Authorization is hierarchical based on method name

*E.g. the ACL for 'system' has precedence over 'system.listMethods', making it easy to sped
ACLs with the minimum information

* System ACL is special

* Can specify access to all methods
* Normal module .clarens_access files cannot specify access controls for other modules

Security and Virtual Organization Il

Example . clarens_access file for system module
access=[('system',
[ORDER DENY ALLOW, # Order
['/0=doesciencegrid.org/0U=People'], # Allow DOE certificates
['CMS'], # Allow group CMS
[1, # Deny individuals
['revoked certs'], # Deny group members
[None, None, Nonel]), # modtime, start time, end time
('system.updateMethods',
[ORDER ALLOW DENY, # Order
['/0=doesciencegrid.org/0U=People/CN=Conrad Steenberg'], # Allow
['admin'], # Allow group admin
[]1, # Deny individuals
[1 , # Deny default
[None, None, Nonel])] # modtime, start time, end time

Security and Virtual Organization IV

Example . clarens_access file for demo module

access=[("",
[ORDER DENY ALLOW,
['"],
['Caltech', 'UFL'],
[1,
['revoked certs'],
[None, None, None]]),
('‘DN",
[ORDER ALLOW DENY,

module name is prepended

Order

Allow

Allow 2 groups

Deny individuals

Deny group members

modtime, start time, end time
method name

Order

['/0=doesciencegrid.org/0U=People/CN=Conrad Steenberg'], # Allow

['admin'],
[1,
[1

[None, None, Nonel])]

Allow group admin

Deny individuals

Deny default

modtime, start time, end time

II"M .:} %

*For normal modules, the module name is prepended to the method
name

* Authorization does not require changes in the certificate structure

*ACLs and VOs can be remotely administered without system admin
Intervention

*VVO administration allows for multiple group administrators

*Does not require certificate revocation lists - ACLs can be used to
deny access to revoked ceriificates via the VO

*ACLs currently limited to method access, but can also be used for file
access control

*More info athttp://clarens.sf.net

*The Clarens architecture presents users and developers with a high
performance, scalable and fault-tolerant way to implement web
services in a Grid environment

*Benefits derived from the commodity Apache server platform

*VO and authorization (ACL) administration can be done remotely after
bootstrapping essential information from text files once after
installation

*Currently deployed in a variety of projects in the US, at CERN and
Pakistan

*Used as a “portal” to classical Globus Toolkit Grids

*Used as basis for Grid-enabled Analysis Environment (GAE) in CMS
experiment.

*More info at hitp://clarens.sf.net

