
Diffraction at LHC
(How to turn LHC into a 14 TeV

Gluon Factory ?)

Risto Orava

University of Helsinki
and

Helsinki Institute of Physics

0.1

Workshop on Diffractive Physics
4. – 8. February 2002
Rio de Janeiro, Brazil



(1) Introduction to the machine (LHC) and the ’base
line’ general purpose experiments (ATLAS & CMS)

(2) Forward physics at LHC:
• Physics motivation
• How to provide the required extended acceptance

of inelastic activity?
• How to detect and measure the leading protons?
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What it takes to cover forward
physics at LHC?
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Diffraction is mostly beyond the reach of the large
baseline experiments at LHC (ATLAS & CMS).1
How to extend them for the benefit of forward
physics?

0.3

(3) Leading proton measurement

(4) Upgrade scenarios & Forward detectors:

• ATLAS + A Foward Spectrometer

• CMS + TOTEM

• Roman Pots and MicroStations©

(5) Physics Performance:

• Diffractive Scattering & Exclusive DPE

(6) Outlook

(TOTEM is accepted to go for a TDR)

LISHEP 2002 Risto Orava1 See presentation of Albert DeRoeck...



Diffraction and Low-x
at the LHC

Albert De Roeck
CERN

LISHEP

Diffraction at the LHC
Low-x QCD at the LHC

2-photon physics at the LHC?
Running the LHC at lower energies



LHC will be a 14 TeV proton-proton collider
with a record luminosity

• proton-proton collisions @ 14TeV
1104 dipoles with B = 8.3T (NbTi @ 1.9K)

• 25ns bunch spacing
2835 bunches (1011 protons per bunch)

• Ldesign = 1034 cm-2 s-1 (100 fb-1 per year)
23 inelastic events per bunch crossing

1.1
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LHC will have 4+ experiments

+ TOTEM

1.2

- construction of the infrastructure well under way
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LHC will produce its first collisions
in 2006...1

• April – September 2004 sector tests with a pilot beam

• February 2006 first beam

• April 2006 first collisions
(L = 5-10 • 1032 cm-2 s-1)

• May – July 2006 shut down

• August 2006 – February 2007 physics run
(L = 2 • 1033 cm-2 s-1 10fb-1)

• March 2007 – April 2007 heavy ion run

1.3

Date: Milestone:
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Inner Detector:
Si strip & pixel
detectors, TRT
/pT 5•10-4 pT 0.01

Solenoid:
2T s.c. solenoid

Calorimetry:
LAr and scintillating tile
based em /E 10%/ E
and had cal (10 )
/E 50%/ E 0.03

Air Core Toroids & Muon
Detectors
/pT 7% at 1 TeV

LHC will have two ’general purpose’
experiments: ATLAS

1.4
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Tracking:
Si strip & pixel
detectors
/pT 1.5•10-4 pT 0.005

Calorimetry:
em PbWO4 crystals
/E 2-5%/ E, had Cu-

scintillator (>5.8 +
catcher)
/E 65%/ E 0.05

Solenoid:
4T s.c. solenoid

Return yoke:
Fe with muon chambers
/pT 5% at 1 TeV

and CMS
1.5
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The Base Line LHC Physics programme
aims at discovering the SM Higgs at
all possible masses.
Moreover, LHC:

• Allows precision measurements:
mW to 15MeV, mtop to 1.5 GeV
sin2

eff,...

• Covers physics beyond the SM:
SUSY: squarks & gluinos up to 2.5 TeV
W’ (Z’) bosons up to 4.5 (6) TeV
compositeness up to 40 TeV

1.6
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Design Criteria of ATLAS & CMS are
based on:

• Detection of High pT Objects:
Higgs, SUSY,...

• Precise measurement of e, , , , and b-jets:
tracking: | | < 2.5
calorimetry with fine granularity: | | < 2.5
muon system: | | < 2.7

• Measurement of jets, ET
miss:

calorimetry extension: | | < 5
• Precision physics (cross sections...):

energy scale: e & 0.1%, jets 1%
absolute luminosity vs. parton-parton luminosity via
”well known” processes such as W/Z production?

1.7
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LHC experiments can be extended to
cover forward physics.

• Search for signals of new physics using fwd protons +
rapidity gaps Threshold scan for new massive states in:
pp p+X+p [1]

• Extension of the ‘standard’ physics reach of present LHC
experiments into the forward region
(CMS/Totem,ATLAS)

• Luminosity measurement with 5 % [2]

• Investigate QCD: tot, elastic scattering, soft & hard
diffraction, multi rapidity gap events (see: Hera, Tevatron, RHIC...)

Possible extension to a full acceptance detector. [3]

[1] Albrow&Rostovsev, DeRoeck, Khoze & RO [2] F. Gianotti, M. Pepe Altarelli, hep/ex/0006016
[3] Felix-proposal, K.Eggert et al.

2.1
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log

|t| (GeV/c)20.001 0.8

Forward physics processes range from Coulomb scattering
to hard diffractive processes

Coulomb scattering: d /dt 1/t2

Coulomb&Strong Inteference:

Pomeron exchange exp(Bt)

”Structure”
pQCD

Coulomb region 10-4 super *
Coulomb –Strong Interference 10-3 high *
Pomeron – Diffraction 10-3 high/low *
Structure – Peaks & Bumps 0.8 low/high *
Large –t – Perturbative QCD 5 low *

Region Characteristic –t (GeV/c)2 Run type1

p1

p2
p2’

p1’

1The official LHC optics is based on low *=0.5m and high * =1100m.

2.2
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In Single Diffractive Excitation mass of the diffractive
system depends on the momentum loss, , of the incident
proton. The size of a rapidity gap is ln .

P

p1

p2
p2’

p1*

ln(2pL/pT)

d /d
proton:p2’ diffractive system:p1*rapidity gap

-ln min 0ln(2p/pT)min max max

lnMdiff
2

p2’

Rapidity Gap Survival Probability1

Tevatron LHC
SD 10-24% 6-21%

1 V.A.Khoze,A.D.Martin and M.G.Ryskin, hep-ph/0007359

= 1 - xF = M2/s

Cross section: d2
sd/d dt = (A/ )bexp(-bt)

with b~10 GeV-2, t ~ 2p2

2.3
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Hard single diffractive excitation is used
to learn more about the Pomeron structure.

• Diffractive production of heavy objects:
W, Higgs, heavy flavour,…and di-jets

• SD vs. = 1 - xp = 1 - p/pbeam and  - t = (pbeam - p)2

• 3rd jet activity in jet production (probing the q/g nature
of Pomeron)

• Extraction of Pomeron structure function
- “Hard” refers to large pt’s, Ingelman & Schlein consider a composite P within a proton

with a flux of P’s (f P) and P structure function F2
P ~ (1- ) (hard)

and F2
P ~ (1- )5 (soft)

2.4
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Double Pomeron Exchange: exclusive channels
with leading protons and rapidity gaps.

The Pomeron has the internal quantum numbers of vacuum.

PP: C = +, I=0,...

P:   JPC = 0++, 2++, 4++,... (not 1++ etc.)

gg vs. uu, dd, ss, cc, bb ?- - - - - -

Gap GapJet+Jet

p1

p2
p2’

p1’

P

P

diffractive systemproton:p2’
proton:p1’

rapidity gaprapidity gap

min max

min max

Rapidity Gap Survival Probability1

Tevatron LHC
CD 5-14% 2-11%

2.5

Two types of signatures
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As a Gluon Factory LHC could deliver...
• 100,000 high purity (q/g = 1/3000) gluon jets with ET > 50 GeV

in 1 year; gg-events as “Pomeron-Pomeron” luminosity monitor

• Possible new resonant states, e.g. Higgs (250 H bb events per
year with mH = 120 GeV, L=1034)*, glueballs, quarkonia 0++ ( b ),
gluinoballs - background free environment (bb, WW & decays)

• Squark & gluino thresholds
- thresholds are well separated
- practically background free signature: multijets & missing

transverse energy
- model independence (missing mass!)
- expect 10-15 events for gluino/squark masses of 250 GeV
- interesting scenario: gluino as the LSP with mass window

25-35 GeV (S.Raby et al.)

• Several events with isolated high mass pairs, extra dimensions
*V.Khoze, Martin & Ryskin, Boonekamp, Peschanski, Royon,...

2.6
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Exclusive central diffraction is
experimentally distinctive - inclusive has higher rate...

In exclusive process: pp p + X + p:
• only Jz = 0, P=+1 contribute1

• signature: forward-backward pair of protons separated
by two rapidity gaps from the central pair of jets

In inclusive process: pp p X p extra particles emitted
in the central region.

(see:Ch. Royon)

1 Amplitude averaged over the two transverse polarisations of the incoming gluons

2.7
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Important part of the phase space is not covered by
the baseline designs. Much of the large energy, small
transverse energy particles are missed.

In the forward region (| > 5) few particles with large
energies/small transverse momenta.

Charge flow

Energy flow

2.8



As a conclusion: For forward physics processes
need to extend the base line experiments.

2.9

Elastic protons

Single Diffraction

Double Diffraction

Central Diffraction

Non-Diffractive
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Diffraction is mostly beyond the reach of large baseline
experiments at LHC (ATLAS & CMS). What should be done
to increase their coverage in the forward region?

(3) Leading proton measurement

(4) Upgrade scenarios & Forward detectors:

• ATLAS + A Foward Spectrometer

• CMS + TOTEM

• Roman Pots and MicroStations

(5) Physics Performance:

• Diffractive Scattering & Exclusive DPE

(6) Outlook

3.0
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Forward physics processes have two
distinctive signatures: (1) leading
protons and (2) rapidity gaps.

• Additional coverage of inelastic activity can be achieved
with a modest extension of these experiments beyond
their base line acceptance limit of | |=5.

• Detection and measurement of leading protons can be
arranged by using Roman Pots/MicroStations far from
the interaction point

3.1
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For detecting and measuring the leading protons,
need to consider the layout and optics of the LHC.

Relevant LHC machine parameters:
• nominal beam energy 7 TeV
• uncertainty in beam momentum o = p/p = 10-4

• bunch spacing at 40 MHz: 25 ns
• design luminosity: 10-34 cm-2 s-1 with * = 0.5m

(vs. injection, special runs)

At the interaction point:
• crossing angle: 300 rad
• beam transverse divergence: 31.7 rad
• normal transverse emittance: 3.75 m (during the

commissioning phase: 1 m!)

3.2
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Leading proton measurement is closely
linked to the machine parameters

Consider the trajectory of a proton in the transverse plane:

y(s) = vy(s)•y* + Ly
eff(s)• y*

x(s) = vx(s)•x* + Lx
eff(s)• x*+ •D(s),

x* and y* = position in the transverse plane
x*, y*     = scattering angles
= 1-p’/p = the longitudinal momentum loss

Lx,y
eff(s)   = ( x,y(s) *) sin (s) the effective length with (s) = -1(s)ds the betatron phase advance

vx,y(s)       = ( x,y(s)/ *) cos (s) the magnification
D(s)         = the dispersion

x,y(s)       = the value of the -function along the beam line
*            = x(s=0) = y(s=0) is the value of the function at the interaction point

3.3
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Acceptance and precision depend on...
The measured proton momentum:

p’ = (1- )•p

t = - (1- )2[sin2
x* + sin2

y*]

Uncertainties:

• dispersion, magnification, effective length of position i
• transverse position of the event at the IP
• position resolution of the detectors
• beam momentum spread: o 10-4

• angular divergence at the IP: x* = y* = 32 mrad.

Estimated accuracy: / 10-4, t/t = 10% for -t = 0.01 GeV2

3.4
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Detecting leading protons in high * ( * =1100m)
or injection * ( * =18m) conditions require
dedicated runs. These are needed for reaching
lower -t values in studies of elastic scattering
and soft diffraction.

• Principle of parallell-to-point focusing to allow a measurement independent of
the position of the initial interaction - in the transverse plane- at high *, the
beam size is large ( x,y = 740 m)

• Small beam size at the chosen detector locations - at high *, y = 0.1mm at
z = 150m

• TOTEM optics (z=150m) reaches -tmin = 10-2 GeV2

• A.Faus-Glolfe, J.Velasco & M.Haguenauer (z=240m) -tmin = 6·10-4 GeV2

• Measurements in the vertical ( tot) and in the horizontal (Coulomb
scattering) planes.

• Super * ( * = 3500m)

Optimize detector locations & machine optics in order to
achieve:

3.5
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3.6LHC low * optics ( * = 0.5m, v6.3)

Beam size is small between s=200-250m.
Beam dispersion (Dx) large at s>300m: horizontal deviation
from the nominal beam position given as: x = Dx

x

s (m)

Dx (m)
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LHC optics (v6.3) layout: Two studies
end up with a similar detector lay-out

3.7

Optimized detector locations: 90m, 150m, 180m, 210m, 240m, >400m?

Totem
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Beam sizes and effective distances at detector
locations define the acceptance.

Location Beam size Effective distance
s(m) x(mm) eff (mm)

150 0.6 7 (13)
180 0.4 5 (9)
210 0.2 3 (5)
240 0.07                   1.7 (2.4)
425          0.3 4 (7)

In defining eff, we assume: 10 x (20 x)
• Note: beam halo rates difficult to predict at 240m’s
• For the RF shielding & guard ring add 1mm dead space

3.8
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Leading Proton Acceptance
- High *(=1100m)

1-
x L

1-
x L

-t (GeV2) -t (GeV2)

15 10

3.9

Acceptance > 50%
for all values of -t:

> 0.03 (0.02)

Acceptance > 50%
for all values of :
-t > 0.02 GeV2

Helsinki group/L.Salmi et al.
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Proton acceptances at 210 & 425m

Acceptance limited
to > 0.03

Acceptance
to > 0.003

3.11

low * ( * = 0.5m)

Helsinki group/ S. Tapprogge, K.Österberg et al.

- for 20 downgrade
by a factor of two
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For enabling the rapidity gap tagging and studies
of the inelastic final states, the forward coverage
of inelastic activity has to be extended beyond the
baseline limit of | |~ 5.

This is also needed for the luminosity measurement
and monitoring.

The Microstation© concept was developed to
provide a solution.

4.1Upgrade scenarios and Forward
detectors - ATLAS & A Fwd Detector
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Design of the Forward Spectrometer is
Challenging since one has to:

• operate close to the beam in intense
radiation environment

• meet the constraints due to limited
amount of space available

• integrate the detectors with the
machine requirements (vacuum, RF,...)

• adapt to changing machine conditions
(injection, special runs) require movable
detectors

4.2
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Additional detectors are needed to extend
the acceptance close to the collision point

- space is limited (forward region of ATLAS)

microstation #2
electrical
cryogenics linesmicrostation #4microstation #1

microstation #5

microstation #3
electrical
and cryogenics lines

4.3

z = 3- 4m z = 10- 13m z = 18m
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4.4

IP

In addition, need to detect and measure
the leading protons close to the beam

-further locations are the same in case of
ATLAS & CMS

For optimal detector locations consider: beam optics, ”warm”
sections, available space & services, access, acceptance ( & ),
radiation background, trigger latency...
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A novel detector for measuring the leading
protons - the Microstation© - is designed to
comply with the LHC requirements.

• a compact and light detector system (secondary  particle emission,
dimensions < 20cm, weight < 2kg)

• integrated with the beam vacuum chamber (acceptance)

• geometry and materials compatible with the machine
requirements (dynamic vacuum (outgassing  10-11 atm, bake-out to 180 C), RF
impedance (< 0.6m /ms), em pick-up)

• m accurcay in sensor movements (alignment)

• robust and reliable to operate (access limitations)

• Si strip or pixel detector technology (heat dissipation (< 50 mW),
simplicity & radiation hardness (n flux 105 kHz/cm2, 0.25 m CMOS read-out chips fully
functional up to 30Mrad))

4.5

©M.Ryynänen, R.O. et al.
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Interface
side

Emergency
trigger

Electrical
connectors -
feed throughs

Cooling
connectors
- circular

4.6

beam

19cm

Helsinki group/M. Ryynänen, R.O. et al.

Micro-
Station
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Inner
tube
for rf
fitting

Inch worm
motorEmergency

actuator

Detector

Space
for
cables
and
cooling
linkSpace

for
encoder

4.7

6cm

Microstation

Helsinki group/M. Ryynänen, R.O. et al.
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Research and Development:
stations

• Beam impedance, electromagnetic pick-up bench
measurements, shielding.

• Alignment, mechanical stability and reliability,
emergency detector retraction from the beam.

• Cooling and cryogenic system studies.
• Bakeout tests, outgassing and vacuum tests.
• Study of radiation hardness of the critical

components:
– motors,
– connectors and feedthroughs,
– flexible connections at cryogenic temperatures in

vacuum.

4.8
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The forward spectrometer introduces
a minor increase for the material
budget

4.9

Helsinki group/V.Nomokonov et al.
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Detector occupancies are well
under control.

Item Minimum bias events + Bkg at low lumi + Bkg at high lumi
Detector occupancy 4.0 10-5 6.5 10-4 6.5 10-3

Fraction of merged hits 1.2 10-3 8.0 10-3 1.2 10-2

1) Primary tracks/physics events
2) Secondary particles ( ,e,p) from interactions

with the beam pipe etc.
3) Beam background

Detector size: 300 50 m2

4.10

Helsinki group/V.Nomokonov et al.
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Upgrade scenarios and Forward
detectors - CMS & TOTEM

4.11

• The Technical Proposal submitted in 1999
• The Technical Design Report (TRD) to be completed by

Fall 2002
• Designed to co-exist with CMS and to run with large or

intermediate * (1100m & 18m &...)
• Aims at:

• Precision measurement of tot ( tot ~ 1mb)
• Elastic scattering down to -tmin ~ 10-3

• Inclusive (soft) diffractive scattering
• Forward spectrometer:

• T1 & T2 for inelastics (3 < | | < 7)
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TOTEM @ CMS 4.12

CMS has reserved space
for the forward detectors
in T1 and T2 regions
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TOTEM T1: 5 MWPC planes
4.13

TOTEM T2 ?

the vacuum chamber in T2
to be specified further

• 3 4.9
• installed in two halves

• 5 7
• within the
rotating shield

+ a lumi monitor behind T2
LISHEP 2002 Risto Orava



Thin window (3 x 2 cm2)

TOTEM : Roman Pots for leading protons1

Concave bottom

The detectors approach the beam vertically (step motor)
Si-detectors operated at 130K (where the Lazarus effect (V.Palmieri
et al.) optimizes charge collection efficiency, reduces noise and provides radiation
hardness.)

Cryogenic Si-detectors
located here (RD39)

4.14

8cm

LISHEP 2002 Risto OravaFor a state-of-the art example: see the display!



Expected Performance -Observables

• Charged particles from inelastic events:
– Pseudorapidities: 3 < < 7 (5.7 < < 8.4)

• with nominal LHC optics

• Leading protons:
Detector location Leading p ( *=1100m) Leading p ( *=0.5m)

180 m -t > 7.0 10-3 GeV2 > 0.03 (0.02)
240 m -t > 3.5 10-4 GeV2 > 0.01
425 m -t > > 0.003 (0.002)

• Missing mass in pp p + MX + p ?

5.1
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Track reconstruction by Microstations

Simulation study with GEANT:
•include signal hits by PYTHIA
minimum bias events

•hits from secondaries due to
backgrounds

•beam related background:
5 MHz for > 15 at design
luminosity (flux vs. R param.)

Track reconstruction code
• pattern recognition with
beam spot constraint
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Double Pomeron Exchange and Higgs

P

P

p1

p2

p1’

p2’

H

MH
2 = 1 2 s

In symmetric case ( 1 = 2 = ) for
MH = 140 GeV: = 0.01 ( = 40%)

(pp p+H+p) = 2 - 4 fb at s = 14TeV

M 3.0 GeV achievable

5.6

Helsinki group/J.Lamsa, R.O.
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Missing Mass Acceptance, low * = 0.5m, z=425m
5.12

Helsinki group/S. Tapprogge, K.Österberg et al.

Mass acceptance cross
checked with a full MAD
beam optics calculation.

Note: Proton hits at 425m
cannot arrive within the
trigger latencies of ATLAS
or CMS.
Possible ways to reduce
event rates:
(1) Rapidity gaps
(2) Large ET jet pairs
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DPE Mass Measurement at 400m

Mass resolution vs. central mass
assuming xF/xF = 10-4

symmetric case:

Central Mass (GeV)

M
as

s 
re

so
lu
ti
on

 (
Ge

V)

M = (1.5 - 3.0) GeV ( xF/xF = (1-2) 10-4)

65% of the data

20 GeV < MX < 160 GeV

(MXmax determined by the aperture of
the last dipole,B11,
MXmin by the minimum deflection = 5mm)

5.13

Helsinki group/J.Lamsa, R.O.
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Outlook(1): LHC Running Scenarios

LHC is likely to be commissioned with small initial beam
currents (first superconducting machine designed for large
beam currents, control of beam halo particles, collimation…)

=> 2-3 years of “running-in” at 1033 cm-2 s-1 ?

Perfect for forward physics!

Short dedicated runs (1-2 days) at nominal & Tevatron energies
with high(1100m) /initial (18m) /intermediate (160m) *,
luminosities of 1028 to 3 x 1033 cm-2 s-1 (large -t),
bunches 36 to 2835 (1028 cm-2 s-1 = 8.6 105 mb-1 day-1)

6.2
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Outlook (2): Running Scenarios

• Measure elastic & inelastic rates,
extrapolate to -t = 0

Luminosity calibration,
calibration of the luminosity
monitor

• Measure tot
• Measure elastic scattering
• Measure soft diffraction
• Measure minimum bias event

structures

• Measure inelastic rate on-line by
the dedicated luminosity monitor

• Measure elastic & inelastic rates
extrapolate to -t = 0 (use d /dt
dependence measured at high *)

Luminosity calibration cross
check

• Measure elastic scattering
• Measure soft diffraction
• Measure hard diffraction
• Measure minimum bias event

structures
• Measure diffractive jet

production

High * ( * = 1100 m, 5nb-1): Low * ( * = 0.5 m, 10fb-1):
Dedicated runs (2 one week runs/year) During the nominal running conditions

6.3
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Outlook (2’): Running Scenarios
• Other possible LHC running modes?

• s = 8 TeV is possible without modifications
• s = 2 TeV is - in principle - possible, as well

•Running at Tevatron energies would enable comparison of
• tot (pp) and tot (pp)
• W, Z, jet production

• Energy dependence di-jet production at large rapidities...

• Energy dependence of rapidity gap suppression effects
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Outlook (2”): Running Scenarios
• Luminosity upgrade - Super-LHC ?

• increase bunch intensity
• new focusing quadrupoles with larger apertures, low *
• reduce bunch spacing to 12.5ns

get up to 1035 cm-2 s-1 luminosities with minor new
investments with the machine, experiments will need
a major upgrade...

• Upgraded energy?
• presently Bth

dipole 11 T limits the smax to 18 TeV
• at LHC: BLHC

dipole 9 T limits the smax to 15 TeV
• 1st industrial pre-series dipole reached 9 T without a quench

• synchrotron radiation may pose a problem
• beam screening requirements may limit to BLHC

dipole 10.5 T?
• further optimization and R&D required
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Outlook (3):
- What it takes to turn LHC into a Gluon Factory?

• Optimized leading proton detection (z = 425m?)

• Extended coverage for inelastic activity (| |>5)

• Upgrade scenarios & Forward detectors:
• ATLAS + A Foward Spectrometer
• CMS + TOTEM - the Forwrd Physics Facility at LHC?
• Roman Pots with cryogenic Si-detectors
• MicroStations as compact acceptance enhancers

• New particle thresholds, forward physics from Coulomb
scattering to hard diffractive processes, and more...

6.4
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Outlook (4)
- Physics Performance Figures

6.5

Inelastic activity can be extended to cover (low *)
• Charged particles within 3(5.7) < | |< 7(8.4)
• Luminosity monitoring for 5.2 < | |< 6.6

Leading protons can be detected (low *, >50% efficiency):
• > 4 10-2 (180m), > 2.5 10-2 (210m), > 10-2 (240m),

> 2.0 10-3 (425m) (10 x approach, for 20 x, factor 2 downgrade)

Missing mass:
• For 20 GeV < MX < 160 GeV achieve 1% mass resolution

Dedicated runs with * = 1100m (3500m):
• Measure elastic protons down to -t = 4 10-3 GeV2 (240m assumed)
• Measure diffractive protons down to > 0.03 (180m)
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Outlook - Final
• Existing LHC experiments can be extended to cover

exiting new physics by adding a forward spectrometer
to their base line designs

• A forward spectrometer could turn LHC into a gluon
factory

• The new physics potential can be achieved with a
very modest additional effort

LET’s START WITH AT LEAST ONE
OF THE LHC EXPERIMENTS!

6.6
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