Diffraction at LHC

(How to turn LHC Into a 14 TeV
Gluon Factory ?)




What 1t takes to cover forward
physics at LHC?




Diffraction is mostly beyond the reach of the Iarﬁ'é
paseline experiments at LHC (ATLAS & CMS).!
How to extend them for the benefit of forward

ohysics?
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Diffraction at the LHC
Low-x QCD at the LHC
2-photon physics at the LHC?
Running the LHC at lower energies




1.1
LHC will be a 14 TeV proton-proton collider
with a record luminosity

1104 dipoles with B = 8.3T (NbTi @ 1.9K)

2835 bunches (10! protons per bunch)

23 Inelastic events per bunch crossing




LHC will have 4+ experiments '?

Layout of the LEP tunnel including future LHC infrastructures.
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LHC will produce its first collisions
in 2006...1




LHC will have two ’general purpose’
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and CMS
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1.6

The Base Line LHC Physics programme
aims at discovering the SM Higgs at
all possible masses.

Moreover, LHC:

m,y to 15MeV, m, to 1.5 GeV
SIN?O¢¢, - - -

SUSY: squarks & gluinos up to 2.5 TeV
W'’ (Z’) bosons up to 4.5 (6) TeV
compositeness up to 40 TeV




1.7

Design Criteria of ATLAS & CMS are
based on:

Higgs, SUSY,...

tracking: In| < 2.5
calorimetry with fine granularity: |n| < 2.5

muon system: |n| < 2.7
calorimetry extension: |n| <5
energy scale: e & n 0.1%, jets 1%

absolute luminosity vs. parton-parton luminosity via
"well known” processes such as W/Z production?




1

LHC experiments can be extended to "
cover forward physics.




Forward physics processes range from Coulomb scatterifig

to hard diffractive processes
o
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2.3
In Single Diffractive Excitation mass of the diffractive

system depends on the momentum loss, &, of the incident
proton. The size of a rapidity gap Is « In&.
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Cross section: d2c,,/dédt = (A/E)bexp(-bt)™ = ™
with b~10 GeV-2, t ~ 62p2




2.4

Hard single diffractive excitation iIs used
to learn more about the Pomeron structure.




Double Pomeron Exchange: exclusive channels
with leading protons and rapidity gaps.

Two types of signatures
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As a Gluon Factory LHC could deliver. .-




2.7

IS

nclusive has higher rate...

In exclusive process: pp —> p

e only J, = O, P=+1 contribut

e signature: forward-backwa
by two rapidity gaps from

In /nclusive process: pp = p

(a) exclusive (b) inclusive (c) inelastic IPIP
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Important part of the phase space is not covered by 28
the baseline designs. Much of the large energy, small
transverse energy particles are missed.
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As a conclusion: For forward physics processes
need to extend the base line experiments.
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Diffraction is mostly beyond the reach of large baseline
experiments at LHC (ATLAS & CMS). What should be done
to increase their coverage in the forward region?




3.1

Forward physics processes have two
distinctive signatures: (1) leading
protons and (2) rapidity gaps.




3.2
For detecting and measuring the leading protons,

need to consider the layout and optics of the LHC.

Relevant LHC machine parameters:

At the interaction point:




Leading proton measurement Is CloseI§'3
linked to the machine parameters




3.4

Acceptance and precision depend on...




3.5

Detecting leading protons in high f* (B* =1100m)
or injection B* (B* =18m) conditions require
dedicated runs. These are needed for reaching
lower -t values in studies of elastic scattering
and soft diffraction.




LHC low B* optics (B* = 0.5m, v6.3)3'6
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3.8

Beam sizes and effective distances at detector
locations define the acceptance.

In defining A ¢, we assume: 10c, (200,)
 Note: beam halo rates difficult to predict at 240m'’s
e For the RF shielding & guard ring add 1mm dead space




Leading Proton Acceptance
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4.1

Upgrade scenarios and Forward
detectors - ATLAS & A Fwd Detector




Design of the Forward Spectrometer Is
Challenging since one has to:




Additional detectors are needed to extend
the acceptance close to the collision point
- space Is limited (forward region of ATLAS)
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In addition, need to detect and measure
the leading protons close to the beam

—further locations are the same In case of
ATLAS & CMS
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A novel detector for measuring the leading
protons - the Microstation© - Is designhed to
comply with the LHC requirements.

©M.Ryynanen, R.O. et al.
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4.8

Research and Development:
ustations




4.9

The forward spectrometer introduces

a minor increase for the material
budget
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Detector occupancies are well
under control.




Upgrade scenarios and Forward
detectors - CMS & TOTEM
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Figure 17: Section of the CMS experimental apparatus showing the integration of the
TOTEM telescopes T1 and T2.
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WPC planes

Figure 19: Sketch of the telescope T1.
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Figure 20: Sketch of the telescope T2,

+ a lumi monitor behind T2
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TOTEM : Roman Pc
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iciency, reduces noise and provides radiation

art example: see the display! Risto Orava



5.1

Expected Performance -Observables




Track reconstruction by Microstations




.6

Double Pomeron Exchange and Higg35




Acceptance
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ATLAS — Preliminary — K. Osterberg, M. Ottala B S. Tepprogge

sinki group/S. Tapprogge, K.Osterberg et al.




at 400m

Mass Resolution of Central Diffractive M ass
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6.2

Outlook(1): LHC Running Scenarios




Outlook (2): Running Scenarios

Dedicated runs (2 one week runs/year) During the nominal running conditions
High B* (B* = 1100 m, 5nb™): Low B* (B* = 0.5 m, 10fb):




Outlook (27): Running Scenarios




Outlook (2”): Running Scenarios




Outlook (3):

- What it takes to turn LHC into a Gluon Factory?




Outlook (4)

- Physics Performance Figures




Outlook - Final




